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Personalized Recommendation for Online Social
Networks Information: Personal Preferences and

Location-Based Community Trends
Shaymaa Khater, Denis Gračanin, Senior Member, IEEE, and Hicham G. Elmongui

Abstract— Microblogs, such as Twitter, are a way for users
to express their opinions or share pieces of interesting news by
posting relatively short messages (corpus) compared with the
regular blogs. The volume of corpus updates that users receive
daily is overwhelming. Also, as information diffuses from one
user to another, some topics become of interest to only small
groups of users, thus do not become widely adopted, and could
fade away quickly. This paper proposes a framework to enhance
user’s interaction and experience in social networks. It first
introduces a model that provides better subscription to the user
through a dynamic personalized recommendation system that
provides the user with the most important tweets. This paper also
presents TrendFusion, an innovative model used to enhance the
suggestions provided by the social media to the users. It analyzes,
predicts the localized diffusion of trends in social networks,
and recommends the most interesting trends to the user. Our
performance evaluation demonstrates the effectiveness of the
proposed recommendation system and shows that it improves
the precision and recall of identifying important tweets by up to
36% and 80%, respectively. Results also show that TrendFusion
accurately predicts places in which a trend will appear, with 98%
recall and 80% precision.

Index Terms— Recommendation systems, social networks,
topics modeling, trending topics.

I. INTRODUCTION

ONLINE social networks are experiencing an explosive
growth in recent years in both the number of users and

the amount of information shared. Through these message
streams, the users can connect with each other, share, find
content, and disseminate information. Some of these sites pro-
vide social links (e.g., Twitter and Facebook). Others are used
to share content (e.g., Youtube and Flicker). Understanding
users’ behavior in these sites is one of the important research
challenges.

We use Twitter social network as our case study. Twitter,
one of the most popular microblogging social media platforms,
was launched in July 2006 and has about 328 million monthly
active users and about 500 million postings per day [1]. Twitter
poses a question to its users, “what is happening?” and the
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answer to this question is restricted to 140 characters. Twitter
users receive information feeds, either by subscriptions: where
subscription is related to the updates that the user request from
his online community (i.e., by following friends and groups).
or by suggestions through which the social media send the
users information that they might be interested in. One of
the important suggestions by the social media is the trending
topics suggested to the user based on geographic location.

However, the online social media face different challenges
in providing these streams of information to the user. While
tweets may contain valuable information, many are not inter-
esting to the users. A large number of tweets can overwhelm
users, since they interact with many other users and they have
to read ever-increasing content volume on their timeline [2].
Thus, the difficulty in recommending content that was of
interest to users became a key challenge for social networks
sites. Moreover, on the suggested stream level, current research
focuses on providing the trending topics based on the current
popularity of the topics within the geolocated communities.
This, in turn, might miss the topics of interest that can affect
these locations in the future.

The goal of this paper is to provide the user with person-
alized recommendation for online social network information.
This is based on both the individual level and the geolocated
community level. We are building on our previous work [3]
to add recommendation on the geolocated communities’ level.
The general structure is shown in Fig. 1. On the individual
level, the proposed approach provides better subscriptions
view for the user (a tweets analysis system in Fig. 1). Accord-
ingly, we propose a new model of a dynamic personalized
recommendation system that provides the user with the most
important tweets. The proposed model captures the user’s
interests, which change over the time, and shows the messages
that correspond to such dynamic interests.

Moreover, on the geolocated community level, this paper
focuses on improving the suggestions provided by the social
media to the users (a trends analysis system in Fig. 1). Our
assumption is that enhancing the trending topics suggested by
the social media to user based on their location will reflect
positively on their online experience. We approached this
point by investigating the interplay between local community
interests and public trends. We developed a model for predict-
ing localized trends diffusion from one localized community
of users to other geographically separated communities of
users. We show that observing the local trends in some
locations (e.g., cities) can be used to predict where these trends
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Fig. 1. General Framework.

will appear next. Finally, the interesting topics for the user
discovered by the tweets analysis system are then used by the
trends analysis system to personalize the trends suggested to
the user.

The most important aspect of our model is the prediction
of trends that will appear in a location, before even users in
that location start mentioning that topic. This is extremely
useful in many cases, such as building a proactive localized
recommendation system for topics or for early prediction of
social events (e.g., protests).

Our contributions are as follows.
1) The notion of dynamic level of interest (LoI) for the

recommendation made to the Twitter users. We build a
user-specific-time-variant (dynamic) LoI graphs for each
topic constituting the tweets. This is based on utilizing
the weights of topics in the user’s tweets to determine
its level of importance to the user.

2) A model incorporates the dynamic change in users’
interests in tweets topics, along with other social features
and tweets-related features to recommend interesting
tweets for the user.

3) A new information diffusion model [snowball cas-
cade (SC) model] in online social networks is suitable
to model the diffusion between geographically separated
communities, rather than relying on the users’ social
network structure.

4) TrendFusion, a predictive model that can predict whether
the trending topics will appear in a certain city in the
future, along with the activeness time, i.e., the time it
will appear.

5) A Web application that recommends to a user the most
interesting tweets according to past interests, along with
predicting the trending topics and their related tweets
that will appear in a location selected by the user.

II. RELATED WORK

Since this paper focuses on the interplay between personal
interests and public trends, we study the information prop-
agation process in social networks and trending topics in
geolocated communities.

A. Recommendation Systems in Twitter

Recommendation systems had first emerged as an inde-
pendent research area in the mid-1990s when researchers
started focusing on recommendation problems that depend on

the ratings structure. These recommendation problems were
reduced to the problem of estimating ratings for the items that
have not been seen by a user [4]. Intuitively, this estimation is
usually based on the ratings given by this user to other items.
Once we can estimate ratings for the yet unrated items, we can
recommend to the user the item(s) with the highest estimated
rating(s).

Moreover, the recent popularity of online social network
sites and the overwhelming amount of information available
today made it difficult for users to find useful information.
As a solution to this problem, many recommender systems
were introduced to help users find interesting information.
Some of these systems were conducted to study the social
network structure and recommend friends to the user based on
the similarities of interests. One study proposed Twittomender
that recommends Twitter users based on the relationships of
their Twitter social graphs [5]. Kwak et al. [6] estimated the
influence of users on Twitter by proposing three methods: the
number of followers, PageRank, and the number of retweets.

Other systems studied the personalized recommendation
systems to recommend only useful content to the users.
Chen et al. [7] proposed a collaborative filtering method to
generate personalized recommendations in Twitter through
a collaborative ranking procedure. A URL recommendation
model demonstrated the utility of various combinations of
tweet content and social graph information during recommen-
dation [8]. These methods are different from this paper as they
miss the dynamic change of interests of the user.

A limited work has been done in dynamically personalized
tweet recommendation. The study done by Abel et al. [9] is
the most relevant to our problem. They analyzed how users’
profiles changes over time, and how to recommend news
articles for topic-based profiles. Our model is different in that
it tries to capture the change of each user’s interest in different
topics over time, and recommend interesting tweets based on
this interest. Uysal and Croft [10] explored user-publisher and
user-tweet features to rank the Twitter feed for each user based
on their probability of being retweeted. Compared with our
model, it just uses the explicit features of the tweets without
considering the personalized features for each user.

B. Topic Modeling

Topic Modeling is a rapidly growing field of research in the
area of text mining and statistical modeling. As text comprises
about 85% of data worldwide [11], topic models have been
widely used to address the problem of “information overload”
associated with this huge collection of text and corpuses.
They are also extended in many ways to be used in social
media to identify text patterns in the content and to facilitate
many applications, such as sentiment analysis and content
filtering [12].

Although topic models, such as latent Dirichlet alloca-
tion (LDA), had been applied successfully on articles and
documents, their application on microblog contents, such
as Twitter, faces different challenges: 1) the posts are
short, 140 characters; 2) the use of informal language and
nonstandard abbreviations (e.g., LOL and WOW); and 3) the
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text contains other context that may act as noise as the URL,
Twitter names, and tags. To overcome these difficulties, some
studies proposed to aggregate all the tweets of a user in a
single document [13]. This can be regarded as an application
of the author-topic model [14] to tweets, where each docu-
ment (tweet) has a single author. Another modification to the
author-topic model was introduced by Zhao et al. [15]. They
introduced a model, Twitter-LDA, which assumes a single-
topic assignment for an entire tweet. The model is based on
the following assumptions. There is a set of topics T in Twitter,
each represented by a word distribution. Each user has topic
interests, modeled by a distribution over the topics. When a
user wants to write a tweet, the user first chooses a topic based
on the user’s topic distribution. Then, the user chooses a bag of
words one by one based on the chosen topic. However, these
treatments assume that the user’s interests in topics will not
change over time, which contradicts our assumption that the
user’s interest in topics changes over time. We are proposing
a complementary approach to the LDA model that can help
in extracting better topics from microblogs.

C. Information and Influence Propagation in Social Networks
In recent years, information propagation on social networks

has been attracting much attention in academic and industrial
circles [16]. Understanding the mechanisms of information
propagation is vital to finding the factors affecting the infor-
mation propagation process. These factors, in turn, provide a
better explanation for predicting information popularity [17].

Two factors affect the information propagation process: the
importance of the information and the level of interactions
between the users. The studies of the first factor mainly
consider the analysis of the messages propagation and the
decay with respect to the time since the posting of the mes-
sage [18]. Most of these approaches are descriptive. However,
our approach is predictive.

For the second factor, the level of interactions between the
users, the current research efforts focus on the interactions
between the users, along with the geographic, demographic,
topical, and contextual features that affect the propagation
between the users [19]. For example, Galuba et al. [20]
proposed a propagation model that predicts which users will
tweet about which URL based on the history of past user
activity. Agarwal et al. [21] studied the problem of identifying
influential bloggers in the blogosphere.

As our model analyzes and predicts the localized diffusion
of trends in social networks between locations, this paper
is different in that it does not take into account the social
structure of the social networks. It is prohibitively complex to
include the social structure connections relating the locations.
Another point is that the location information posted by the
user is not always available or accurate. This paper is also
different from the research that studies relationship between
geography and information diffusion [22], as our model con-
siders other nongeographical parameters.

D. Trends in Social Networks

Trending topics in Twitter are words and phrases, appearing
on the main page of Twitter, that are currently popular in users’

tweets, and are identified for the past hour, day, and week.
They represent the popular topics of conversations among the
Twitter users [6]. Trends in social networks have recently been
a focus of interest for many researchers.

Some works studied trends from a temporal view.
Leskovec et al. [23] studied the temporal properties of infor-
mation shared in social networks by tracking memes across
the blogosphere. Other works studied the structural nature of
the social graph that leads to creating the trends [24].

Other studies focused on studying the dynamics, the growth,
and the decay of the trending topics [25], [26]. Asur et al. [25]
studied the trending topics on Twitter and provided a theoret-
ical basis for the factors affecting the formation, persistence,
and decay of trends.

A limited work has been done to analyze the relation
between trends and geography. Kamath et al. [27] modeled
the social media spread from location to location by trying to
predict the top K cities in which a topic will be trending.
Ferrara et al. [28] investigated the spatial and geographic
dynamics that govern trending topics in Twitter. However, their
goal was different, as they aimed at studying what dynamics
underlie the production and consumption of trends in different
geographic areas. In other words, they wanted to know if
trends travel through the Internet, or by people physically
traveling across cities.

III. TWEETS ANALYSIS: PERSONALIZED

RECOMMENDATION SYSTEM MODEL

We now describe the first model we developed to provide
better subscriptions view for the user.

A. Problem Description

When users log on Twitter, they see a stream of tweets
sent by friends, which composes their timeline. Many of these
tweets are conversational tweets and/or are not of personal
interest to the user. The goal of our model is to decide for each
user the tweets that might be of interest from the user’s time-
line. Beside being able to post their own tweets, users can also
interact with their timeline by replying, retweeting, or favoring
the tweets. As there are no explicit means to extract the user’s
LoI in a tweet from Twitter, we relied on these actions to
predict the user’s interests. Hence, the retweets, replies, and
favorites can be used as an indication of the interest of the
user in the corresponding tweets. We define a tweet as a
tuple 〈u, p, e, oe, t, inttu〉 where (vectors are in boldface) u is
a vector describing the features of the user u receiving the
tweet, p is a vector describing the features of the publisher p
of the tweet, e is a vector describing the features of the tweet e,
oe is a vector that holds the distribution of probabilities of the
tweet text e across different topics, t is the time window in
which the tweet is posted, and inttu is a binary value indicating
whether this tweet is of interest to the user u or not.

Given these tuples for the tweets in the user history, our
goal is to predict inttu for each new tweet.

We now describe in more detail our approach and discuss
its main components (Fig. 2).
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Fig. 2. Tweets analysis structure.

B. Topic Extraction

In order to predict the user’s interest in a corpus, we based
our prediction on the user’s interest in the topic(s) covered
in that corpus, alongside with other features. Consequently,
we needed to build a topic model of our tweets. Topic models,
such as LDA [29], are well known for exploratory and pre-
dictive analysis of text. Generally, topic models define topics
as distributions over the words in a vocabulary and documents
as being generated by mixtures of these topics. Topic models
represent document words in a bag-of-words format without
considering word order to be of any particular importance.
According to the frequencies of different words appearing
together in each document, the model then determines the
most relevant set of words to each topic. After training a topic
model, it can be used later to infer the topic(s) available in
new documents.

Formally, the LDA model can be described as follows.
Given: A set of e posts denoted by E = {e1, . . . , en},

the LDA algorithm generates a set of k topics denoted by
L = {l1, . . . , lk}. Each topic is a probability distribution over
m words denoted by li = {wi

1, . . . , w
i
m}, where wi

j is a
probability value of word j assigned to topic li . The post
can then be represent as oe = {oe

1, . . . , oe
k}, where oe

j is the
percentage of topic l j in the post e composition.

C. Tweets Pooling

The short length of tweets might result in a poor topic
model. Thus, to help get around the problems associated with
the analysis of numerous small documents, we construct large
documents out of the tweets. Therefore, instead of looking
at each tweet individually, we group together tweets that
are similar in some sense (the same semantics, the same
hashtags, and so on) in a process called pooling. In our model,
we present some schemes that we used to aggregate tweets
into a larger document from which a better topic model can
be trained. These pooling schemes can be described as follows.

1) Hashtag pooling: In Twitter, the hashtag is a string
of characters preceded by the hash # character. They
are used as identifiers for tweets discussing the same
topic [30]. By including hashtags in a message, users

indicate to which conversations and topic their message
is related to. Using these hashtags can be a good
indicator for tweets relatedness, and so can be used in
the aggregation process of tweets. For the hashtag-based
pooling scheme, we aggregated documents sharing each
hashtag in one pool, as in [31]. If a tweet has more than
one hashtag, this tweet will be added to the tweet pool
of each of those hashtags.

2) Replies pooling: We used replies for tweets as another
way for aggregation. In general, a reply is a string
preceded with the @ character. It is used as a comment
on another tweet posted by you or by anybody in the
social networks. As the tweets and their replies might
share the same topics discussed, aggregating them in one
pool can be a good indication for the tweet relatedness.

3) URLs pooling: We also aggregated tweets that include
the same URLs in their text. Tweets sharing the same
URLs might be discussing the same topic and, hence,
can be aggregated.

In our model, we consider each aggregated pool of tweets
a document, and the words in the pool the vocabulary. We use
these documents and the vocabulary to extract the topics that
form the corpus.

D. Dynamic Level of Interest

In this section, we study how the interests of individual users
about a certain topic change over time. Getting the dynamic
LoI in a tweet takes place through some steps.

1) First, we get the per topic activity in each day d for the
user, denoted by Ad = {ad

1 , . . . , ad
k }, where ad

i is the
level of activity of the user in topic li on day d . Ad is
calculated by adding the vectors oe in that day [see (1)].
The details of this step are shown in Algorithm 1

Ad [i ] = ad
i =

∑

∀e∈E :edate=d

oe[i ] =
∑

∀e∈E :edate=d

oe
i . (1)

2) Given a new tweet enew, the user’s LoI in the tweet can
be calculated using (2). Basically, the equation sums
up the user activity vectors in the window of the last
seven activity instances prior to the tweet creation day
d . Each of these instances corresponds to user’s actions
done in one day. For a user who is active (posting a
tweet, replying, retweeting, or favoring another tweet)
every day, this window will span one week period. For
less active users (not active every day), this window will
be longer to cover the last seven active days in which
the user was active. We only consider the last seven
instances, as considering intervals longer than seven
days will introduce irrelevant noisy tweets as discussed
in [32]. This step is illustrated in Algorithm 2.

Level Of Interest(u, enew)

=
∑

l∈L

(
oenew[l] ·

∑

d→d−7

Ad [l]
)

∑

l∈L

(
oenew

l ·
∑

d→d−7

ad
l

)
.

(2)
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Algorithm 1 Users Level of Activity per Topic
Procedure CalculateDailyActivityVectors
Input Set of all users users
begin

L← List of all topics
for each User u in users do

Days← All Days in which u was active
for each Day d in Days do

T weets ← All tweets by u in d
// Initialize vector for user u in day d
Au

d ← [0, . . . , 0]
for each Tweet e in Tweets do

oe ← Percentages of topics in e
for each Topic l in L do

Au
d [l] = Au

d [l] + oe[l]
end for

end for
end for

end for
end

Algorithm 2 LoI in a New Tweet
Function CalculateLevelOfInterest
Input User u

Tweet e
begin

oe ← Percentages of topics in e from LDA
model

d ← e posting date
LoI ← 0
for each Topic l in L do

val ← 0
for i = 1 to 7 do

val ← val + Au
d−i [l]

end for
val ← val ∗ oe[l]
LoI ← LoI + val

end for

return LoI
end

E. Personalized Tweet Recommendation

In addition to measuring the dynamic LoI for each user,
some other static features can affect his interests. Some of
these features represent the personalized interests of the user,
and others are general features that are related to the tweet‘s
quality or the publisher‘s authority that can affect the tweet‘s
degree of interest to the user. Sections III-E1 and III-E2
describe the personalized features and other explicit features
that might affect user’s interest.

1) Personalized Social Features: Social features are the
features that represent the social relationship between the user
and the publisher. This relation can be friendship, neigh-
borhood who posts tweets about events happening in the

neighborhood or celebrities who have interests in common
with the user.

A user-publisher similarity feature measures the similarity
between the activity level of the user and the publisher on all
topics. This is measured as the cosine similarity between vec-
tors formed by the summation of the LoI in a topic for the user
over time [see (3)]. Generally, the cosine similarity measure
yields a value between −1 and 1. The value of 1 means the
exact distribution match, i.e., activities of both the users are
distributed in the same proportions on different topics, though
one of them might be generally more active than the other.
The value of 0 means that the users have nothing in common

Cosine Similarity(Ut , Pt ) = Ut · Pt

‖Ut‖ · ‖Pt‖
=

∑T
t=1 Ut × Pt√∑T

t=1 Ut
2 ×

√∑T
t=1 Pt

2
. (3)

2) Explicit Features: Besides the personalized social fea-
tures, we analyzed other explicit features that can affect the
user’s interests. These features appear or can be inferred from
the user profile. This includes the following.

1) Publisher-Based Features: Related to the tweets’ pub-
lisher. These features are used as an indicator for the
activity of the publisher.

a) Publisher Followers: The number of followers for
each publisher. High authoritative publishers are
likely to have more followers than others.

b) Publisher Tweets Count: The number of tweets
posted by the publisher since the opening of the
account. This feature is an indicator for how active
the publisher is.

c) Mention Count: The number of times a publisher’s
name is mentioned in all the tweets. If a publisher
is frequently mentioned, the publisher is more
likely to be popular and has more interactions than
other publishers.

2) Tweet-Based Features: It describe the tweets contents as
follows.

a) Retweet Count: The number of times the tweet got
retweeted. It is a way of estimating the popularity
of the tweet. A tweet retweeted more times is more
likely to be a useful one.

b) HasURL and HasHashtag: Sometimes a pub-
lisher includes supplement to their tweets with
URL or hashtags. Hashtags can sometimes be an
indication of the tweet’s topic.

3) Location Feature: It represents the cities or countries
found in the publishers’ profiles. This feature is used to
capture the spatial neighborhood effects. If a publisher
posted a tweet about local events, and this publisher is
the user’s neighbor, then, most probably, the user will
be interested in this post.

F. Experimental Results

In this section, we describe our data sets and the preprocess-
ing steps followed by the experimental results for each step
in our model.
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1) Data Set and preprocessing: For our experiments,
we created a Twitter data set containing 5 million tweets and
20 000 users that were seeded by first selecting 100 active
users from the Virtual Town Square blog [33]. We used Twitter
REST API [34] to facilitate the data collection. The majority of
the tweets collected were published in a three-month period
from April 2013 to June 2013. We then expanded the user
base by following their followers and friends. We were able
to include 20 000 users with all their posts.

As Twitter APIs does not allow access to the timeline of
the user directly without authorization, we build each user’s
timeline by first getting the posts for each of the base users and
then following the tweets posted by their friends, and consider
them the scanned tweets by the user. All the favored tweets
by the base users are also retrieved.

We build our model from a repository of more than 5 million
tweets. To eliminate incomplete and noisy data, we pre-
processed the tweets by discarding tweets with non-English
words. We also removed meaningless words, such as stop
words, Twitter specific stop words, user names, and special
characters, and stemmed the remaining words.

Usually, users do not have time to see all the tweets posted
on their timeline. Also, users can be away or inactive (i.e.,
no posts, retweets, or favorites) for long periods of time. Using
this period in our data set will make the number of negative
examples much bigger than the number of positive examples.

To overcome this, we filtered the browsing history by
considering a window made up of a set of 20 tweets. The
number 20 is chosen due to the fact that Twitter limits the
number of tweets to be retrieved to 20 tweets each time
the user browse his timeline. The window’s sliding scheme
depends mainly on the user’s action in time of browsing
the history tweets. As in the case of retweeting or reply,
the window of interest will be 15 tweets before the original
tweet till 5 tweets after the user’s action. When the user is
just posting a tweet without referencing any history ones,
the window of interest will be considered 15 tweets before
and 5 tweets after the user’s action, respectively. Twitter API
does not reveal the exact date of favoring a tweet. In the case
of favoring a certain tweet, the window of interest is chosen
to be 15 tweets before and 5 tweets after the original favored
tweet.

Fig. 3 shows the different cases for choosing the window
of interest in the user’s timeline. This filtration step is applied
to the tweets before the classification step in both training and
testing. The filtered out tweets are still used in training the
topic model and calculating the user activities.

2) Tweets Pooling: The tweets pooling process aggregates
semantically similar tweets into one pool. Each pool is treated
as a document. We first began by aggregating each tweet
and their replies into one pool. Then, for each hashtag,
we aggregated all the tweets that are sharing the same hashtag.
Finally, we aggregated the tweets that contain the same URLs
in their content. This pooling process decreases the number of
documents and increases the document size to be the size of
the aggregated tweets.

3) Evaluating Topic Models: The unsupervised nature of
topic modeling methods makes choosing one topic model over

Fig. 3. Timeline window for the user.

Fig. 4. Perplexity for LDA and our model.

another a challenging task. Topic model quality tends to be
evaluated by performance in a specific application. Topic mod-
els can be evaluated based on perplexity [35] as a quantitative
method. Perplexity is a well-known standard metric used in
information retrieval field. It tries to quantify the accuracy of
a model by measuring how well the trained model deals with
an unobserved test data as in (4). Perplexity is defined as a
reciprocal geometric mean of per word likelihood of a test
corpus. A lower perplexity indicates a better generalization
performance

Perplexity(Dtest|M) = e
−∑

d∈Dtest log P(wd |M)
∑

d∈Dtest Nd (4)

where wd represents the words of test document d , M is the
topic model, and Nd is the number of words in document d .
The perplexity results of LDA with unpooled data and our
model are shown in Fig. 4. The perplexity of the proposed
method is better than LDA without pooling the data. We con-
ducted our experiments using 35 topics, as the improvement in
perplexity was low compared with the increase in the runtime.
More details are provided in Section III-G2.

For topic extraction, we used the MAchine Learning for
LanguagE Toolkit (MALLET) [36]. MALLET is a Java-based
package that implements the LDA model. For example, top
ten words for sports topic are browns, game, nfl, cleveland,
football, coach, team, eagles, win, and season [3].

After the model is trained, it can be used to predict the
topics in unseen corpuses. Thus, we can now predict topics
distribution for every corpus in our database.

4) Calculating the Dynamic Level of Interest: In real life,
the degrees of popularity of the topics are not constant.
There are topics that attract more users than the others. Also,
the user’s interest in one topic can change from one time to
another. The dynamic LoI is calculated using (2). The user’s
dynamic LoI is based on the dynamic level of activity of the
user in each topic.

5) Personalized Recommender Model: Using the above-
described features, a feature vector was created for all the
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Fig. 5. Average precision and recall for the three classifiers. (a) Average
precision. (b) Average recall.

tweets in the activity windows of the users, as described in
Section III-D. Each of the feature vectors is augmented by
a class value. We considered the only possible class values
are interesting or not interesting. The class value is set to
be interesting if the user replied, retweeted, or favored the
corresponding tweet. Otherwise, the class value is set to be not
interesting. We used the feature vectors for each user individu-
ally to train three classifiers: 1) J48, a Java implementation of
the C4.5 tree-based classifier [37]; 2) supervised support vector
machine (SVM), a function-based classifier; and 3) naive
Bayes classifiers [38]. The three classifiers are used to predict
whether the tweets of the timeline are interesting (the user will
most likely interact with) or noninteresting.

6) Dynamic LoI and Other Features Effect: We recorded
two quality measures in our experiments: precision [P =
TP/(TP + FP)] and recall [R = TP/(TP + FN)], where TP,
FP, and FN are the number of true positive, false positive, and
false negative examples, respectively.

Fig. 5(a) shows the average precision values for the three
classifiers. Using the dynamic LoI feature improved the aver-
age precision of J48 by 8% and improved that of the SVM
and naive Bayes with about 2% and 36%, respectively. SVM
is performing better than J48 and naive Bayes classifiers, when
not relying on the dynamic LoI. The best results are achieved
when using dynamic LoI feature with either J48 or SVM
classifiers. When using the dynamic LoI feature, the J48 and
SVM performed equally. The naive Bayes classifier performed
better with dynamic LoI, but not as good as the other two
classifiers.

Fig. 5(b) shows an improvement in J48, SVM, and naive
Bayes average recall by 33%, 3%, and 80%, respectively.
J48 is also outperforming SVM and the naive Bayes classifiers
when using dynamic LoI.

G. Discussion

We had to accurately judge the gain from including the
dynamic LoI feature and to determine the influence of users
who have few tweets, For that, we used the concept of “active
users” from the traditional media research [39] and focused on
those users with some minimum level of activity. We sorted the
users by their activity level in posting, retweeting, or favoring
the others posts. The users are then divided into three cate-
gories according to their activity level (high active, medium
active, and low active users).

Fig. 6(a)–(c) shows the average gain in precision and recall
values in J48, Bayes, and SVM classifiers, respectively, when

Fig. 6. Average gain in precision and recall with including dynamic
LOI feature. (a) J48—activity level effect. (b) SVM—activity level effect.
(c) Bayes—activity level effect.

Fig. 7. Classification analysis. (a) Average feature information gains across
all users. (b) Classification runtime.

including the dynamic LoI feature. A positive value means
that including the feature improved the classification, whereas
a negative value means that including the feature worsen
the classification. The gain from including the dynamic LoI
feature is higher when considering users with high activity.
This makes our model more important for highly active users.
The only negative gain is with the SVM classifier for users
with less activity. This is intuitive since less active users do not
show their interest in the topics as they do not retweet or reply
on the tweets.

We had also evaluated the relative importance of other fea-
tures used in the classification process. We used the informa-
tion gain feature selection method to measure the dependence
between features and the class labels [40]. Fig. 7(a) shows the
features ranked according to their average information gain.
It is clear that the LOI feature is considered one of the rela-
tively highest important features in the classification process as
compared with other features. We analyzed the classification
runtime for each classifier. Fig. 7(b) shows the runtime for
the three classifiers. It is clear that the SVM has the longest
runtime compared with J48 and Bayes classifiers (note the
logarithmic scale on the Y -axis).

1) Tweets Pooling Effect: Since changing the number of
words in the documents can greatly affect the output of
the topic modeling step, we repeated the experiments after
applying the pooling step. The experiments show that the
average recall was improved by more than 6% without loss
in precision.
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Fig. 8. Number of topics variation effect.

2) Number of Topics Variation Effect: Besides our previous
experiments, we analyzed the effect of varying the number
of topics on the classification process. For example, a user
might be interested in a certain topic, but the classifier
would only recognize the user’s interest in a subtopic. We
demonstrated this by reconducting the experiments with the
J48 classifier while varying the number of topics (Fig. 8).
Generally, the small number of topics results in very broad
topics. This results in poor classification.

On the other hand, a large number of topics will result
in many very specific topics, as subtopics become the main
categories. This also leads to poor classification in our case.
Again, the variation of the number of topics has a minor
effect on precision, but the recall was improved by 4% by
having around 35 topics. The recall value dropped again,
when raising the number of topics to 60. Therefore, although
the perplexity value was better at 60 topics than 35 topics,
the overspecification did not help in our case.

To clarify, assume that we have tweets about different sports.
Ideally, in the generated topics by LDA, there will be a
general topic for all sports, such as football and basketball.
Using a small number of topics will lead to very broad
topics. Continuing in the same example, the sports might be
merged with other nonrelated topics to form a bigger topic.
For example, the topic modeling system (LDA) might merge
sports with movies for instance to generate an entertainment
topic. Therefore, assume there is a user that is only interested
in sports. This will make our system mistakenly recommend
tweets about movies to the user.

On the other hand, a large number of topics mean that the
sports will be split into more specific topics, for example,
football, basketball, and so on. According to the user timeline,
our system might detect his interest in one of these sports, such
as his interest in football, but miss his interest in basketball.
This explains the rise and drop of performance of our system
when the number of topics is varying from small to large.

IV. TRENDS ANALYSIS: TRENDFUSION MODEL

This section describes TrendFusion, our proposed model for
improving the suggestions provided by the social media to
the users. The model is used for predicting localized trends
diffusion from one localized community of users (location) to
other geographically separated communities of users.

The TrendFusion model relies on the information cascade
concept to represent the flow of a piece of information, usually

Fig. 9. Information cascade represented by a DAG.

called the contagion, through a social network [41]. The cas-
cade is usually represented as a directed acyclic graph (DAG).
Fig. 9 shows an example of information cascade, where it has
the following.

1) Nodes: The entities (such as users, groups, or cities) that
represent locations in our model.

2) Edges: They represent the information propagation
between entities.

3) Seeds: The vertices initiate the cascade.
4) An Activation Step (or a Step): Every time a given

trend appears at the same time at one or more entities
corresponds to an activation step, or simply a step, in the
cascade.

5) A Cascade: A sequence of activation steps generated by
a contagion process. The weights on the edges represent
the influence of an active entity on an inactive one. The
way to calculate these influences and how an inactive
node responds to them are specific to each model.

A. TrendFusion Framework

The two main objectives of TrendFusion are as follows.

1) Predict whether a trend will appear for some location
based on its diffusion in other locations.

2) Predict when the trend will appear.

The problem we are trying to solve can be defined as
follows.

1) Given: A history of spatially and temporally tagged
trending topics in a number of locations.

2) Processing: Define a model that can extract and capture
the dependence relations between locations.

3) Output: When a topic is trending in some locations, use
the model to predict where and when this topic will be
trending next.

B. TrendFusion Model

Generally, most information diffusion models assume that
the considered entities (such as users and groups) are con-
nected by a social graph and that the graph structure is
known beforehand. In our case, there is no such social graph
connecting the locations together. Thus, before applying any
known diffusion model, we need first to infer the underlying
hypothetical graph that describes the influence between the



112 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

locations. Fortunately, several network inference models have
been developed recently [41]–[43]. These algorithms estimate
the underlying network structure given past activation times.

In the TrendFusion model, we assume a fully connected
graph and estimate the transmission rates along the edges
using the NetRate algorithm [44]. We based our assumption
of the fully connected graph on the first law of geography by
Tobler [45], “Everything is related to everything else, but near
things are more related than distant things.” We start with a
fully connected graph of the locations and estimate the trans-
mission rate between each pair of locations using NetRate.
The lowest transmission rates are then omitted reducing the
edges (connections) between the locations.

The NetRate algorithm estimates the transmission rates, not
just a binary ON/OFF value. The algorithm takes the input
in the form of information cascades. The NetRate algorithm
relies on the survival theory and the concept of hazard rate
that will be explained shortly [46].

C. Generating the Hazard Rate Graph

After converting the activations into different cascades of
trends between the locations, we compute the pairwise hazard
function between these locations. The hazard rate is mostly
related to the survival theory [46] and can be described
as the instantaneous activation rate between two locations
i and j [44], i.e., how likely is it that location j will adopt
a trend at time t j , if location i adopted that trend at time ti
[see (5)]

H (t j |ti ; λi, j ) = f (t j |ti ; λi, j )

S(t j |ti ; λi, j )
(5)

where f (t j |ti ) is the conditional likelihood of transmission
from location i to location j . Likelihood depends on the
activation times ti and t j (i.e., the time the trend first appears in
location i and location j ) and a pairwise transmission rate λi, j .
The transmission rate λi, j models the strength of an edge
(i, j) and determines how frequently information spreads from
location i to location j . The most commonly used parametric
models for the shape of the conditional transmission likelihood
are the exponential, power-law, and Rayleigh distributions
models [46]. S(t j |ti ) in (5) refers to the survival function
computed for the edge connecting the locations i and j .
It is computed as the probability that location i does not cause
location j to activate by time t j as

S(t j |ti ; λi, j ) = 1− F(t j |ti ; λi, j ) (6)

where F(t j |ti ) denotes the cumulative density function com-
puted from the transmission likelihoods.

D. TrendFusion Stages

TrendFusion consists of five stages (Fig. 10). The first
three stages can be shared across the locations of interest.
Stages 4 and 5 should be repeated for each location.

1) Stage 1: Collect Trends From Locations: Trends should
be collected from all the locations of interest. The trends are
collected every �t time unit. If social media do not reveal
the localized trending topics, an extra step of monitoring user
activities and extracting the trending topics is needed.

Fig. 10. Stages of TrendFusion model.

Algorithm 3 Build Cascades
Procedure BuildCascadesFromActivations
Input ActivationsList al
begin

// An activation a is a record a = (trend , location, time)
ActivationsList alo ← Order al by time
for all Activation a in alo do

if a.trend appeared in (a.time - 24 hours) then
cas ← last cascade of a.trend
if a.location appeared in cas then

Add a.time to instances of a.location in cas
else if a.time equals time of last step in cas then

Add a to last step of cas
else

Add new step to cas containing a.location
end if

else
Create new cascade cas
Add new step to cas containing a.location

end if
end for

end

2) Stage 2: Store Trending Topics Stream: As the stream
of the trending topics is received, they are labeled by the
location/time and they were received from/at. The trending
topics are stored for further analysis.

3) Stage 3: Build Cascades: Since trending topics are
continuously polled every fixed time step, it is not always clear
if a trend is a beginning of a new cascade or a continuation of
an old one. Therefore, a process is needed to build cascades
from trending topics that are retrieved every �t . Algorithm 3
provides the details of the cascades building process. The
process begins by chronological ordering of all received spa-
tially and temporally tagged trends (activations list), where one
activation represents a record of (trend, location, and time).
The algorithm first determines if an activation should be part
of an earlier cascade or it should be considered as a seed for
a new cascade. Ferrara et al. [28] state that the life time of
almost all trends does not exceed 24 h. Thus, we consider a
trend to be a seed for a new cascade if it was not trending for
more than 24 h. The algorithm then determines whether or not
to consider this activation as a new step. If the location did
not appear before in the cascade, then this is a new step.
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Otherwise, this is considered an update to the location activity
times.

4) Stage 4: Extract Parameters: This stage is done for each
location. In a given cascade, every location that appears in
that cascade will have a distinctive set of parameters. The
parameters are calculated mainly based on the diffusion model
used, as will be explained in Section IV-E. For example,
an average distance parameter will be calculated between
a given location and all its parents or ancestors depending
on the diffusion model. There are four main classes of the
parameters.

1) Diffusion Parameters (Hazard Rate): It is the value rep-
resenting the activation rate between any two locations
calculated over all cascades:

a) maximum hazard (max_hazard);
b) sum of hazards (sum_hazard).

2) Geographical Parameters: It is used to examine the
geospatial properties of the trending topics spread.

a) Geographical Distance Between Loca-
tions (shr t_dist): It indicates the shortest distance
between locations and whether these distances
affect the appearance of trends in these locations.
For this, we have used the Haversine distance,
which is commonly used to measure the distance
between the locations based on the spherical
shape of the Earth (as compared with Euclidian
distance) [47]. An average distance between the
locations (avg_dist) is also calculated.

b) Coverage (cvr): A spread over geographical area
of a trend S at time t . The area, which the
trend covers, is determined by getting the area of
bounding box in which the trend appeared. For the
bounding box area, we determined the bounding
locations (north east, north west, south east, and
south west) in which each trend appears. We then
calculated the area using the Haversine distance
between the boundaries.

3) Historical Parameters: These parameters describe the
path characteristic of each trend through all locations.
Their values are based on previous cascades.

a) Trending Topics Similarity Between Locations
(simtt) [27]: The similarity parameter is used
to measure the trending topics similarity between
the locations. We used the Jaccard coefficient
between the sets of trends observed at each loca-
tion, as shown in (7), where Mlocationi is the set of
trends appeared in locationi . A similarity score of 1
means that all trends are common between the two
locations. A score of 0 means that no trends are
in common between the two locations. An average
similarity is calculated over all trends

simt t (locationi , location j )

= |Mlocationi ∩ Mlocation j |
|Mlocationi ∪ Mlocation j |

. (7)

b) Average Gap (avg_gap): For each trend appearing
between two locations, the gap is calculated as the

Fig. 11. Time tracking of trends’ appearances in locations i and j .

time difference between the end time in location
i and its appearance in location j . It is calculated
over all trends.

c) Overlap Time: For two locations i and j , the over-
lap time is calculated as the difference between
trend’s end time in location i and its appearance in
location j , given that (ti.end > t j.start). An average
overlap time is generated over all cascades.

d) Average Trend Age (avg_age): The average time
of trend’s presence in the social network.

Fig. 11 shows the calculating time differences between
trends’ appearances in locations.

4) Trend Parameters: Information about the relationship
between locations based on the current cascade.

a) Trend’s Rank (sum_rank): As Twitter provides a
trends box that contains the top ten trending topics,
ranked according to their popularity. The trend’s
rank differs when the trend list is updated every
5 min.

i) Maximum Rank (sum_rank): The highest rank
reached by each trend in each cascade. The
sum of trend’s ranks over all cascades is also
computed.

ii) Weighted Sum of Trend’s Rank (weighted_
sum_rank): It indicates whether or not the
trend’s rank has an effect on the transmission
rate. It is calculated as a sum of trend’s ranks
multiplied by the hazard rate between two
locations.

b) Number of Parents/Ancestors (num_parents /
num_ancestors): The number of parents and
ancestors’ locations for each location/cascade.

5) Stage 5: Model Learning/Using: As locations are differ-
ent, a distinct predictive model is needed for each location.
The model should learn the parameters extracted from the
previous stage and should be used to predict if a new cas-
cade will appear in that location. For this, we utilized two
diffusion models. We first present our information diffusion
model, the SC model. We then use the widely used general
threshold (GT) model as our baseline. The differences between
the models will be described in detail.

E. Snowball Cascade Model

The central part of TrendFusion is a new cascade model,
SC Model. Conceptually, as any other information diffusion
cascade model, the SC model tries to predict whether or not
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Fig. 12. Steps of the SC and GT models. (a) Step 1 in the SC model. (b) Step 2 in the SC model. (c) Step 1 in the GT model. (d) Step 2 in the GT model.

a certain piece of information will get adopted by different
nodes in a social network. Generally, there are three types
of nodes: active, contagious, and inactive. Given a piece of
information, inactive nodes are those nodes that did not adopt
that information yet, active nodes are the nodes that adopted it
already, and the contagious nodes are the nodes that are trying
to influence other nodes of adopting it. Initially, other than
the seed nodes, all the other nodes are considered inactive.
The seed nodes are those nodes that initially introduce that
information to the network. At the beginning of the cascade,
seed nodes are activated. Once a set of nodes is activated, they
become contagious and will always be contagious, i.e., it will
keep trying to influence other nodes. The rationale behind the
continuous influence is simple: as long as a topic is trending
in a location, this interest can affect other locations. Thus,
in the SC model, the number of active nodes in the system that
is trying to spread the influence will grow over time. Active
nodes try to influence other nodes, which, if activated, become
contagious and try to influence other nodes, and so on. This
snowball effect is the reason behind the model name.

The SC model is different from the widely used GT cascade
model [48], [49]. In the GT model, contagious nodes try to
collectively influence other inactive nodes. But once they are
done, they are no longer contagious, i.e., they will no longer
try to influence other nodes.

Yet another difference between the two models is that in the
SC model, the edge weights are vectors rather than scalars.
The vector values change from one activation to the other.
This is different from the GT model, where the edge weights
are required only to be fixed scalars. The vectors on the edges
represent the set of parameters that might affect the influence
between a contagious location and inactive location at a given
step of a cascade.

Fig. 12 shows an example of two steps for four nodes in SC
and GT models, respectively. In the SC model [Fig. 12(a)],
two nodes are contagious, both trying to influence the two
inactive nodes. The β values on the edges represent vectors
containing the influence rates along with other parameters
that are described in TrendFusion Stage 4 (Section IV-D4).
The function box in the SC model acts as a binary classifier
that takes the β vector values as an input. In the second step
[Fig. 12(b)], the contagious nodes remain contagious, and keep
on trying to influence other inactive nodes till the end of the
cascade.

However, in the GT model [Fig. 12(c)], two nodes start as
contagious nodes, both trying to influence the two inactive
nodes. The second step [Fig. 12(d)] shows that one of the

inactive nodes got infected and became contagious itself, and
the other one was not affected. The two contagious nodes
in step 1 became active in step 2. This means that they
are already infected but will not try to influence other node
anymore. Another difference between the SC and GT models
lies in calculating the influence rate. In the GT model, the β
values on the edges are scalar values representing the influence
rates between the corresponding nodes. The function box in
the GT model is just a summation operation followed by a
condition to check that the sum is below a certain threshold.
The threshold is a specific property of each node, i.e., the
threshold is different from a node to another node. If the sum
exceeds that threshold, the node becomes contagious, as in
the second step shown in Fig. 12(d).

1) SC Model Definition: Consider a directed graph
G = (V , E), where V is the set of vertices representing
locations, and E is the set of weighted edges, with weights
β t

uv of edge euv ∈ E representing the influence rate from
location u to location v at time step t . Let Nv be the set of
vertices with edges going into v, and St be a subset of Nv

with the vertices that are active on or before time t . For every
vertex v, there is an activation function f (), such that at time t ,
if f (β t

u0v
,β t

u1v
, . . . ,β t

unv ) > θv∀ui ∈ St , vertex v becomes
active at time t + 1. The value of θv can be learned for each
location by a binary classifier.

2) GT Model Definition: Consider a directed graph
G = (V , E), where V is the set of vertices representing
locations, and E is the set of weighted edges, with weights
wuv representing the influence rate of the edge euv ∈ E from
location u to location v. Let Nv be the set of vertices with
edges going into v, and St be the subset of Nv active at
time t . For every vertex v, there is an activation function f (),
such that at time t , if f (St ) > θv , vertex v becomes active at
time t + 1. In the original model, the value of θv is randomly
chosen from a uniform distribution in the interval [0, 1]. We
rely on statistical classifiers to estimate the likelihood value
of θv .

The GT model can be considered as a special case of
the SC model, where the β vectors are reduced to a fixed
scalar (influence rate), and the β = 0, for all nodes that had
already been active before time t .

F. Evaluation

We now describe the methodology used to generate our data
set, and then, we describe in detail the results of every stage
in our model.
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Fig. 13. Histogram of the distances between the 48 cities.

1) Trending Topics Data Set: We used Twitter APIs [1] to
collect all trending topics appearing on Twitter for a period
of 30 days, starting from August 2014 until September 2014,
in 48 U.S. locations (cities). Twitter provides a trends box that
contains the top ten trending hashtags or phrases at any given
moment, ranked according to their popularity. These trending
topics, along with their rank, are updated every 5 min. Each
user can monitor the trends at the worldwide, country, or city
level.

We deployed a crawler to get the trends every 5 min for the
48 cities. We also collected all trends reported by Twitter for
the United States and the whole world. To mask the effect of
global trends in our experiments, we filtered out the trends for
the cities that appeared in the U.S. trends or the global trends.
We ended up collecting more than 400k different trends.
The data are stored as tuples of the form: (woeid, trend0,
trend1, . . . , trend9, and date/time), where woeid is Yahoo
Where On Earth ID [50] and trend0, . . . , trend9 are the
top ten trends. Fig. 13 shows the histogram of the distances
between the 48 cities, where the x-axis represent the upper
limit of each distance bin in miles.

2) Applying TrendFusion Framework Steps: As mentioned
earlier, the steps presented in Algorithm 3 are used to con-
vert the data collected from the previous step into cascades.
We then use the MATLAB implementation of the NetRate
algorithm [51] to build the influence graph for all locations.
This implementation assumes linear DAG for cascades, i.e., it
assumes that each step in the cascade consists only of one
location. However, the SC model allows multiple locations per
cascade step. Therefore, the algorithm was modified slightly
to account for this difference. The modified NetRate is used
to generate three graphs, one for each assumed distribution for
the hazard rate. The graphs from NetRate are then used with
the cascades to generate the training and testing examples for
each location.

For each location, we generate the training file containing
the examples for the first 22 days of the data and a testing
file containing the remaining data. The extracted parameter
was based on the SC model. We also used the GT model as a
baseline, so training and testing data were also generated for
it. Each of the parameter vectors is augmented by one class
and one dependent variable.

Given a cascade, when generating the training examples for
a location, an example is generated for each step in the cascade
before that location appears in it. For example, if a location

appeared in step n, we generate n− 1 examples for each step
before that location appeared. If the location does not appear
in the cascade, then the number of examples generated will be
equal to the number of steps in the cascade. The class values
are set to be the appearing or not appearing, depending on
whether or not the location appeared in the cascade. If the
class value is appearing, then the dependent variable value is
set based on the lag value between the time at the cascade
step and the time the trend appeared in the location.

We used the parameter vectors for each cascade for indi-
vidual trends to train three classifiers:

1) logistic regression (LR), a probabilistic statistical clas-
sification model [38];

2) stochastic gradient descent (SGD) classifier [52];
3) random forest (RF), ensemble learning method classi-

fier [53].

We used Weka [54] and R [55] statistical packages to
train the three classifiers and afterward use them to predict
whether or not the trend will appear in the designated location.

3) Experiments: The evaluation includes six experiments.
1) Predict trends based on individual steps.
2) Predict trends considering each cascade as a whole.
3) Determine the effect of similarity of topic interest

between the locations on the quality of prediction.
4) Determine the effect of each parameter on the classifi-

cation process.
5) Determine the average time a topic can be predicted to

be trending before it actually does.
6) Predict when a trend will appear.

G. Results and Discussion

We evaluated the performance of TrendFusion by running
our training and testing examples through the three classifiers.
Each example represents a step in a cascade. We used the
widely adopted GT model as a baseline to compare its perfor-
mance with TrendFusion. We recorded two quality measures
in our experiments, recall and precision. Here, recall is the
ratio of the number trends we were able to predict to the total
number of actual trends. Similarly, precision is the quality
of our prediction, i.e., the ratio of the number of topics that
actually become trending in our predictions to the total number
of topics we predicted will be trending.

In the first experiment, we considered the output from each
individual example. This means that at each step, we take a
decision regardless of other steps in the cascades. Fig. 14(a)
shows the recall and precision values obtained by TrendFusion
and the GT models using the three classifiers. It is clear
that TrendFusion was giving the same performance across the
different classifiers with a recall value of around 0.71 and a
precision value of around 0.84 (84% of the predicted trend
will be actually trending).

On the other hand, the GT model recall values were in
the range between 0.47, 0.48, and 0.5 for the LR, SGD,
and RF classifiers, respectively, which means that it misses
around half of the trends. The precision values range from
0.71 to 0.78, which means that the slight increase in the recall
was accompanied with more false positive predictions. This
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Algorithm 4 Classify Cascade
Procedure ClassifyCascade
Input Location l

Cascade cas
begin

// Determine the class for the whole cascade
counttrue_posit ive ← 0
count f alse_posit ive ← 0
counttrue_negat ive ← 0
count f alse_negat ive ← 0
if l appears in cas then then

class ← appearing
else

class ← notappearing
end if
// Collective classification for all steps
for all step s in cas do

prediction ← classify_at(s)
if prediction is appearing then

if class is appearing then
counttrue_posit ive ← counttrue_posit ive + 1

else
count f alse_posit ive ← count f alse_posit ive + 1

end if
return

end if
end for
// prediction should be not appearing
if class is not appearing then

counttrue_negat ive ← counttrue_negat ive + 1
else

count f alse_negat ive ← count f alse_negat ive + 1
end if

end

shows that the GT model is not suitable for modeling the
diffusion of trending topics between the locations.

In the second experiment, we evaluated each cascade as
a whole, getting one decision for the whole cascade. For a
given location, we set the class value to be appearing for the
cascades in which the location appeared, and not appearing
for the cascades in which the location did not appear. The
classification is performed on each step, and then, the predicted
values are reduced to one value for the whole cascade. If the
predicted value at any of the steps is appearing, we consider
the combined prediction as appearing, as if doing a logical OR.
The reason behind this way of classification is that the class
is assigned at each step based on the fact whether or not the
location appeared later in the cascade. So at an early step in
reality, that might not have any influence on a given location
that appeared later in the cascade, the class is still assigned
as appearing. This is due to the fact that we do not have
ground-truth data.

A false positive prediction is made in a cascade where a
given location did not appear, if at any step an appearing
class is predicted, as detailed in Algorithm 4.

Fig. 14. Average precision and recall for TrendFusion and GT models using
cascade steps and all cascades, respectively. (a) Precision and recall—cascade
steps. (b) Precision and recall—all cascades.

Fig. 14(b) shows the average recall and average precision
values for the TrendFusion and GT models for the second
experiment with the same three classifiers as before. The aver-
age recall values for TrendFusion improved greatly. The wrong
not appearing predictions made in the first experiment at the
beginning of the cascades are neutralized in this experiment by
a later correct appearing prediction. Values for recall are 0.96,
0.98, and 0.99 for LR, SGD, and RF classifiers, respectively.

On the other hand, precision dropped slightly to around
0.8 for the LR and SGD classifiers and to 0.71 for the
RF classifier. This also means that one wrong appearing
prediction at any step of cascade in which a given location did
not appear will cause the overall prediction to be considered
wrong. Although the average recall is slightly improved for
the GT model, it still in the range of 0.5–0.56 for the three
classifiers. The average precision also dropped as expected
to the values of 0.65, 0.65, and 0.51 for LR, SGD, and RF
classifiers, respectively. This still point out that even though
that the GT model was good in modeling information diffusion
in a social graph at the users level, it is not suitable to model
the trending topics diffusion between the locations.

These two experiments were conducted using the trans-
mission rates generated by the modified NetRate algorithm
assuming exponential distribution. We also examined the two
distribution models (power law and Rayleigh) to decide the
shape of the conditional transmission likelihood and to analyze
the effect of changing them on the classification process. The
experiments were repeated using the other two distributions.
The results were very consistent with the results obtained for
exponential distribution. The variation in the results obtained
in all experiments did not exceed 1%.

The third experiment was conducted to measure the effect
of similarity of users’ topics of interest on the quality of
prediction. The trending topic names may or may not be
indicative of the kind of information people are tweeting
about, so we wanted to measure the effect of applying topic
modeling on the trends, and how this can affect the flow
of trends between different locations. The steps were as
follows.

1) Collecting Tweets for Each Location: For each location,
all tweets posted during the examined period were
collected.

2) Applying Topic Modeling on Tweets: Using the algo-
rithm discussed in III-B, we get the distributions of
topics in each tweet.
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Fig. 15. Average precision and recall for TrendFusion without and with
adding topics, using only distance features and the GT model. (a) Precision
and recall—cascade steps. (b) Precision and recall—all cascades.

Fig. 16. Rank of each parameter in the classification process.

3) Getting Related Tweets for Trends: For each trend
appearing, we get all the tweets that include the trend
hashtag or word.

4) Getting Related Topic for Trends: Using the previous
two steps, we measure topic interest in each location by
getting topic distribution all over the trends.

After measuring the topic interest in each location,
we included this as a parameter in the prediction
model (Section IV-D4). Fig. 15(a) and (b) shows the recall and
precision values obtained by TrendFusion after including the
topics features, TrendFusion after including distance features
only, and the GT models using the three classifiers considering
the cascade steps and all the cascades, respectively. The results
show that including the topics as parameter helped in improv-
ing the average recall and precision in all of the cases when
considering cascades as a whole. Including the topics also
helped the precision in all cases when considering individual
steps, almost without affecting the recall. The results for using
the distance as the only parameter to the models show that the
distance is not the only factor that impacts the propagation of
trends. This stresses the importance of the other suggested
parameters, which will be detailed in the next experiment.

The fourth experiment was conducted to measure the
effect of each parameter on the classification process. This
is achieved by ranking all the parameters according to their
average information gain. Fig. 16 shows the rank of each
parameter used in the classification process. We observed that
it has the following.

1) Geography Matters: It is clear from Fig. 16 that loca-
tions that are geographically near each other are most
likely to influence each other in the social context.

2) The similarity in interests and diffusion parameters is
of high importance: the locations similar in the trending
topics in the past are more likely to have the same trends
later on. The locations with high combined diffusion rate
to a given location will affect it with high probability.

3) Trend parameters are the least important: although loca-
tions may be influencing each other, the rank of the
trending topic in one location is not affecting its rank in
the other location. This might be due to the fact that each
location has different interests in topics. This also means
that it does not really matter in how many locations did
a topic appear in, to be influential to other locations,
it might just give an indication of how globally important
is that topic.

4) The remaining parameters were equally important.

The fifth experiment explored the average time a topic can
be predicted to be trending before it actually becomes trending.
Fig. 17(a) shows the average time before a trend can appear.
The x-axis represents the lag time between the beginning
of the cascade and the time a trend will occur. The y-axis
represents the time before a trend is predicted as trending.
This shows that we are able to predict the topics on average
3 h before they actually trend.

We noticed a drop at 17 h of time to trend [Fig. 17(a)].
We investigated the possible reasons for this drop. We found
that the number of trends that appeared in new locations
after 17 h is relatively much less than different hours. To
find out the reason for that, we used the facts presented
by Upbin [56] that shows the average Twitter activity by
hour [56]. Upbin [56] showed that the user activity is highest
between 9 A.M. and 2 P.M., and lowest between 1 A.M.
and 6 A.M.. According to this, we assumed that most trends
are formed during the high activity intervals. The first four
horizontal lines in Fig. 17(b) represent different time zones
in the United States, namely, Eastern (EST), Central (CST),
Mountain (MST), and Pacific (PST) standard time. The red
peaks represent high activity time at each time zone. The blue
troughs represent low activity intervals. The lower line rep-
resents the combined activities, and it shows that the highest
activity in the United States happens around 1 P.M. Eastern,
and the lowest activity happens around 6 A.M. Eastern. The
difference between these numbers is 17 h; thus, the trends
will not be trended within this gap, and hence, the drop in a
number of trends happens after 17 h.

In the sixth experiment, we tried to predict when a trend
will appear. The training and testing examples in this case
are labeled by the time lag between each step and the step at
which the trend appeared in a given city. We trained a linear
regression model and used it to try to predict when will the
trend happen. Fig. 17(c) shows a histogram where the bins
(x-axis) represent the error in prediction in hours. The results
show that most of the predictions were around zero error.
The bimodal peaks are probably due to the activity windows
described in Fig. 17(b), where the high activity interval makes
the trends travel faster, and the low activity window makes the
trends be delayed in traveling.

V. TRENDFUSION SYSTEM

To further show the applicability of the concepts presented
in this paper, we created “TrendFusion” Web application to
provide a user with personalized timeline that suits his/her
interests. The site analyzes the user’s Twitter feed, according
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Fig. 17. Predicted trends analysis. (a) Lag analysis for predicted trends.
(b) Activity times over 24 h. Red line: highly active window. Blue line: low
active window.

to the techniques and theories presented in this paper, and
predicts the tweets interesting to the user. Fig. 18 shows the
general framework components and how they map onto the
TrendFusion system.

After registration, users are redirected to Twitter to give
read-only permission to TrendFusion to access their Twitter
account. This is essential for retrieving the timeline infor-
mation of the user. When given the permission from the
user, TrendFusion retrieves up to 800 of the past tweets in
the user’s timeline. This is the maximum limit allowed by
Twitter that can be retrieved from a user timeline. TrendFusion
extracts the tweets with user’s actions using the window
system described in Section III-F1. As described earlier in
Section III, the system relies on the user’s actions, such as
retweets, replies, favorites, and posts, to assume the user’s
interest in a past tweet. The extracted tweets are thus used to
train a classifier. TrendFusion will build a unique personalized
model for each registered user. The implementation is still
relying on Weka package [54] to train a J48 classifier. The
choice of J48 is based on its relatively high accuracy and at the

Fig. 18. TrendFusion System.

same time small overhead, according to the results presented
in Section III-G.

After signing into TrendFusion, the user is given the option
to view all the timeline, or to view the interesting tweets only.
To keep the user timeline as current as possible, TrendFusion
will try to pull new tweets from Twitter every 5 min. When
a new tweet is retrieved, TrendFusion will extract all the
relevant features as described in Section III-E. TrendFusion
will then load the user classifier model to predict if the tweet
is important to the user or not.

The user can also choose to set a specific tweet as important
to him or not by clicking on the check box that exists at the
right of each tweet. A checked box means that the tweet is
important to the user, and an empty box means that the tweet is
not important. TrendFusion will update the user models once
every day. The user can thus guide the system by checking
the important tweets that the system did not recognize as
important, and unchecking the unimportant tweets that the
system recognized as important.

The system allows the user to view the Twitter trending
topics for 48 U.S. cities and to view the predicted trending
topics that will be appearing in the user’s chosen location. The
suggested trends are also personalized according to the user’s
interests discovered from the tweets marked as important by
the tweets analysis system. So for each user in the system,
his/her interesting topics are passed from the tweets analysis
system to the trends analysis system. As we also build a topic
model for the trends, we use the user interesting topics to filter
and rank the suggested trends by the trends analysis system.
For example, in Fig. 18, an important tweet to the user is
reflected in a suggest trending topic that is predicted to appear
at the user’s city, as marked by the blue arrow.

Before launching TrendFusion Web application, trends were
retrieved for each of the 48 cities for about a month. These
trends are then used to create the hazard rate graph using
the NetRate algorithm [44] as described in Section IV-C. The
collected history trends were also use to build a localized
classifier for every city in the 48 cities. The model was
build using an SGD classifier with the features described in
Section IV-D4. The features are extracted based on the SC
model described in Section IV-E.

TrendFusion will retrieve Twitter trends for the 48 cities
every 5 min. This is because Twitter caches trends for 5 min.
If a shorter interval is used, the duplicated sets of trends will be
retrieved. Once a set of trends is retrieved for a given city, they
are added to the cascades following the steps in Algorithm 3.
For the cities that did not appear in a cascade, run the city
localized classifier on the features extracted from that cascade.
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The user can choose to view the worldwide trending topics,
with no predicted trends, or can select one city to see Twitter
trends and predicted trends according to TrendFusion.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the concept of dynamic LoI for
microblogs users. To determine the LoI of the user in a new
corpus, we proposed a novel model that is based on topics in
that corpus and the history of the user activity in each topic.
The goal of the model is to identify the important tweets to a
user in the user’s timeline.

To illustrate the effectiveness of our model, we used a
Twitter APIs to build a data set with more than 5 million
tweets, and more than 20 000 users. We demonstrated the
importance of using the dynamic LoI feature, by showing the
improvement of the average precision and the average recall
for the three classifiers used (J48, naive Bayes, and SVM).
Using our approach, we were able to improve the precision
and recall of identifying important tweets by up to 36% and
80%, respectively. The model analysis showed that the model
has higher gain for users with high activity level.

We analyzed the behavior of the LDA topic model to
identify the key factors that can affect its performance. We
demonstrated that by choosing a proper number of topics and
applying pooling techniques to the tweets, an additional 10%
improvement can be achieved.

We also developed TrendFusion, a model for predicting the
localized trends diffusion in social networks. Our goal was to
develop a model that will allow us to predict whether a trend
will be appearing in a certain city in the future, and if it will
appear, when it would appear. We also demonstrated that the
diffusion models that are designed for modeling information
spread between users, and are not suitable for modeling trends
diffusion across cities, where no real friendship relations exist.
The main aspect of TrendFusion is a new information cascade
model, SC model. The model assumes that an activated node
in a graph will always be contagious.

We illustrated the effectiveness of our model using the trend-
ing topics obtained from Twitter for 48 of biggest U.S. cities.
We demonstrated the effectiveness of our model comparing
our model with the GT model, a widely accepted diffusion
model. TrendFusion outperformed the GT model by achieving
the recall and precision of prediction of trends by 98% and
80%, respectively.

TrendFusion is also capable of predicting the time at which
the trend will appear. TrendFusion successfully predicted
trends before they actually become trending by up to 24 h.
The root mean squared error in TrendFusion time prediction is
less than 6 h. However, more analysis is needed to understand
how to identify locations that can be influential for the spread
of a given topic.
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