
Location-aware Privacy and More: A Systems Approach
using Context-aware Database Management Systems*

Walid G. Aref
Department of Computer Science

Purdue University
West Lafayette, Indiana 47907

aref@cs.purdue.edu

 Hicham G. Elmongui
Department of Computer Science

Purdue University
West Lafayette, Indiana 47907

elmongui@cs.purdue.edu

 Mourad Ouzzani
Cyber Center

Purdue University
West Lafayette, Indiana 47907

mourad@cs.purdue.edu

ABSTRACT
When a user issues a query, database engines will usually return

results based solely on the query and the content of the database.

However, query issuers have a “context” which if taken into

account will certainly change the outcome of the query. Thus,

when responding to the query, the database system can consider

the query issuer's context and return only the objects/tuples in the

database that not only satisfy the query predicates but also are

relevant to the query issuer's context. In this paper, we give an

overview of Chameleon; a context-aware database management

system. Chameleon introduces SQL-level constructs that describe

the "context" in which the query is issued as well as the reciprocal

contexts of the objects in the database. By tying the query issuer's

contexts with the corresponding contexts of the objects in the

database, Chameleon can retrieve the objects of relevance to the

query context. Using Chameleon's general interfaces for context

definition and awareness activation, we show how database

systems that offer not only location-sensitive privacy but also

other forms of privacy, e.g., both location-sensitive and time-

sensitive privacy profiles for their users can be realized easily.

Several modeling and performance challenges for realizing

context-aware database management systems are presented.

Categories and Subject Descriptors

H.2 [Database Management]. H.2.1 [Logical Design]: Data

models.

General Terms

Algorithms, Management, Performance, Design, Languages.

Keywords

Context awareness, privacy, preferences, personalization,

database systems

1. INTRODUCTION
As applications and application requirements grow in complexity,

the underlying data management system has to increase in

sophistication to cope with this complexity. In the early days,

when applications, e.g., Geographic Information Systems (GIS),

demanded efficient handling of large amounts of spatial data,

DBMSs had to increase in sophistication to handle location data

efficiently. This included the costly development of spatial

indexing techniques that support concurrency and recovery,

spatial query processing algorithms, e.g., spatial join algorithms

with and without spatial indexes, and locality preserving strategies

for disk placement of spatial data.

Similarly, Hippocratic databases have been proposed to address

the privacy policy requirements that users’ data are being used

only by the intended recipients and only for the purposes

approved by the data owners [1]. Systems, e.g., Hippocratic

PostgreSQL [2] have been prototyped to provide controlled

disclosure of the users’ data according to the users’ approved

privacy policies.

In order for database systems to provide users with location-aware

privacy, tremendous effort has to take place to develop combined

Hippocratic and spatial database engines, which is very costly. In

this paper, we present a systems approach to address this issue.

Chameleon, a context-aware DBMS, is an extensible database

server that uses contexts to eliminate the need for tailoring

specialized engines [3], e.g., a spatial database engine, a

Hippocratic database engine, a location-sensitive Hippocratic

database engine, a time-sensitive, location-sensitive Hippocratic

database engine (refer to Figure 1). Instead, using Chameleon, one

can realize these systems by defining appropriate contexts using

Chameleon’s context definition and manipulation languages.

Figure 1: The vision behind Chameleon.

Chameleon supports two notions of context: the context

surrounding the query issuer and the reciprocal contexts of the

objects stored in the database. The query context reflects the

situation of the query issuer, e.g., the query issuer’s location, the

time the query is issued, the identity of the query issuer, or even

the temperature or the weather conditions surrounding the query

issuer. Chameleon takes these situations into consideration when

answering a query. For example, in Figure 2, when querying the

database asking for a close-by restaurant, the user wants the

database system to return restaurant responses that match the

user’s current context, i.e., her location, the time the query is

issued, and her personal diet and dietary restrictions.

*The authors acknowledge the support of the National Science
Foundation under Grant IIS-0811954.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ACM SPRINGL ’09 November 3, 2009. Seattle, WA, USA

Copyright 2009 ACM ISBN 978-1-60558-853-7/09/11...$10.00.

42

Database objects have contexts that are reciprocal to the query

issuer’s contexts, e.g., (refer to Figure 3), the location of the

database objects, the time duration of an object (or when the

object can be available for querying), and the identity of the object

(or the ids of the query issuers or classes of query issuers that are

allowed to access the object).

Figure 2: Chameleon considers the user’s active contexts (user’s

time, location, and identity) when responding to the user’s query.

In Chameleon, we can combine multiple contexts into more

complex ones using the proposed context composition, e.g., a

Hippocratic DBMS that also is location- and time-sensitive by

combing the location-, temporal-, and identity-sensitive

contextual services.

Figure 3: Illustration of what user and DB object contexts are

combined in Chameleon to realize various specialized DB engines

using the same context interfaces in Chameleon.

In this paper, we give several proof-of-concept instantiations of

Chameleon, e.g., one to realize a privacy-aware (Hippocratic)

database server, and another to realize a spatial database server

using the same proposed constructs and interfaces of Chameleon.

Further, we show how contexts can be combined within

Chameleon to realize more complex systems, e.g., a server that

supports location- and time-aware privacy database, i.e., one

where the privacy profiles of database objects depend not only on

the identity and purpose of the query issuers but also on the query

issuer’s location and time when they issue the query (location-
aware and time-aware privacy).

Chameleon is built using extensions to PostgreSQL that include:

(1) New syntax and query rewrite components to define

contexts and to issue queries that use contexts,

(2) New query operators that process contexts, e.g., the

Skyline join and FilterMark operators that are vital

when processing queries that involve contexts, and

(3) Extensions to the query optimizer to invoke these new

operators when appropriate.

The rest of this paper proceeds as follows. In Section 2, we

present the context classes in Chameleon and the dimensions that

we use to define a context. Section 3 presents the syntax and

semantics of the extended SQL constructs within Chameleon that

defines contexts. Section 4 addresses conceptual evaluation of

context-aware SQL commands and implementation issues.

Section 5 gives several example instantiations to realize a spatial

database server, a Hippocratic database server, and a location-

aware and time-aware Hippocratic database server. The latter

illustrates how contexts can be combined in Chameleon to realize

more complex servers. Section 6 discusses related work. Section 7

includes some research challenges and concluding remarks.

2. CONTEXT CLASSES
For illustration, we use a simple bookstore example, where users

express their preferences when accessing the bookstore database.

Later in the paper, we will show more sophisticated cases, mainly

for system realizations of location-aware privacy as well as

location- and time-aware privacy.

Table 1 gives a projection on the table books that contains

information about books in a certain bookstore. Among other

pieces of information included in this table, we can find the name

of a book, the years of its publishing, the category under which

this book falls, the type of the cover (HC for hardcover or PB for

paperback), as well as whether or not the book is in stock. Only

the books in stock that are relevant to the user's context are

retrieved.

In contrast to existing work on context-aware systems that are

built on top of a database, we propose to incorporate context

awareness inside the DBMS. We adopt a broad definition of what

a context is. For example, the physical location in space of the

query issuer when he/she issues the query can be part of the query

context. The time the query is issued and the identity of who

issued the query may also both be part of the query context. We

support the following two classes of contexts:

(1) The User Context, i.e., the context of the query issuer.

(2) The Object Context, i.e., the contexts of the queried

data.

Figure 4 illustrates a high-level view of Chameleon’s context

model. We classify user contexts according to three dimensions.

These dimensions will be used when the application developer

defines a context in Chameleon. These dimensions will reflect in

the access method selection of any query on the tables that are

affected by that context.

Dimension 1 - Context Sign: The sign of a user context is either

“positive” (S) or “negative” (G). A positive context defines what

the context is. For instance, if the context is location, an instance

of a positive context is the preferred locations by the user, e.g.,

43

specified as a range. On the other hand, a negative context defines

what the context is not. An instance of a negative location context

Table 1: The example bookstore database.

is the locations or regions not desired by or prohibited to the user.

In the running example, an instance of a positive context is the

willingness to buy hardcover books only. However, trying to

avoid science fiction books is a case for a negative context.

Dimension 2 - Contextual Relation: The contextual relation is

the relation among the contextual data. This relation mainly shows

the order of relevance of the contextual data. The contextual

relation can be an equivalence relation (Q). In this case, data that

comply with all contextual values are reported with no special

ordering. Besides, the contextual relation can also be a total

ordering relation (T). This relation would reflect on the data being

reported to the user. The data will be sorted on the rank of the

contextual values with which the data conform. Moreover, the

contextual relation can be a partial ordering relation (P). In

contrast to the previous relation, the rank of the contextual values

here will follow a partial order rather than a linear order.

Referring to the books table, an example of an equivalence

relation is the equal willingness to buy a science fiction book or a

travel book. However, if the user is interested in new books, a

total ordering relation would be more appropriate to retrieve the

latest books first. If the user prefers cooking books over science

fiction books, and travel books over medicine books, with no

specific preference among the other combinations, would need to

specify her context to contain partially ordered contextual values.

Partially ordered values may be transformed into linear ordered

values using an appropriate (possibly online) topological sort

algorithm. This is out of the scope of this work, but we add the

modeling part here for completeness.

Figure 4: Abstraction of Contexts in Chameleon.

Dimension 3 - Listing of Data: By listing of data we refer to how

the data should be listed. Specifically, should the data that does

not conform to the user context be excluded from the listed data?

Or, should those data be included but come last? The former case

is termed “unlisted excluded” (X), whereas the latter is termed

“unlisted included” (N).

Consider the bookstore example, if the user context is the

willingness to buy travel books only, the user context gets the

“unlisted (other book categories) excluded”. Nevertheless, an

“unlisted included” context can be illustrated by the preference to

buy hardcover books but still get the paperback books down in the

list -- after retrieving all hardcover books). In a location context

example, if the user context is the willingness to buy houses that

lie within a certain geometric region, say R, then “unlisted

excluded” means that houses outside R are not reported to the

user, whereas “unlisted included” lists the houses outside R after

listing the houses inside R.

2.1 User Context as a 3D Point
Based on these three dimensions, each user context is viewed as a

point in the 3D space defined above. For instance, in the

bookstore example, one might be willing to buy only science

fiction or travel books with no particular preference between these

two types. This is an example of a positive user context having an

equivalence contextual relation with the unlisted contextual values

excluded. Whenever a user with the aforementioned context

selects all tuples from the table books, only rows 1, 2, 5, 8, 9, 11,

14, 15, 18, 19, 21, and 25 are retrieved. If the user defines the

same context to have a total ordering relation instead of an

row title year category cover instock

1 book01 2004 Science
Fiction

HC √

2 book02 2002 Travel PB √

3 book03 2001 Medicine HC X

4 book04 2000 Cooking PB √

5 book05 1997 Science
Fiction

PB √

6 book06 2001 Medicine HC √

7 book07 1995 Cooking PB X

8 book08 1996 Travel PB √

9 book09 2000 Science
Fiction

PB √

10 book10 2003 Medicine PB √

11 book11 2005 Travel HC √

12 book12 2006 Cooking HC X

13 book13 2004 Medicine PB √

14 book14 2006 Science
Fiction

HC √

15 book15 2005 Travel HC √

16 book16 2006 Cooking HC √

17 book17 1976 Medicine PB √

18 book18 2001 Travel PB √

19 book19 2007 Science
Fiction

HC √

20 book20 1988 Cooking PB X

21 book21 1993 Science
Fiction

PB √

22 book22 2006 Medicine HC X

23 book23 1999 Cooking PB X

24 book24 2006 Medicine HC √

25 book25 2006 Travel PB √

44

equivalence relation such that science fiction books have higher

rank than travel books, the retrieved rows will be: 1, 5, 9, 14, 19,

21, 2, 8, 11, 15, 18, and 25.

All points in this 3D space are valid when the user context is

positive. However, when the user context is negative, only

contextual values with the unlisted included are valid. This

restriction is due to the definition of a negative user context; the

user is specifying what context values are not current, and hence

all the others should be current (or nothing will be ever returned).

Moreover, for a negative user context, since the user only

describes the complement of her positive context, no rank is

explicitly specified for that actual positive context. Therefore, the

equivalence relation would be implicitly understood for the

contextual values. Figure 5 summarizes the overall model for

contexts in Chameleon along with the three dimensions. The next

section illustrates how these context dimensions can be used to

specify contexts using newly proposed SQL constructs.

Figure 5: Conceptual Model of Contexts in Chameleon.

3. SQL EXTENSIONS FOR CONTEXT

AWARENESS
In this section, we cover the various constructs that Chameleon

uses to enable context awareness inside a DBMS. A brief

overview of these constructs is also presented in [3].

Creating Object Contexts: Chameleon uses the CREATE
OBJECT CONTEXT statement to define an object context.

When the object context is part of the object relation, it does not

need to be defined explicitly.

CREATE OBJECT CONTEXT context_name (

 {col_spec | table_constraint} [, . . .]

 , table_binding);

Contextual values will be stored inside relations to be easily

incorporated within the query processor. The CREATE
OBJECT CONTEXT statement has similar constructs to those

in the CREATE TABLE statement and it also creates an object

context relation. For instance, col_spec refers to the specification

of a column such as name, data type, default values, and so on. On

a similar vein, table_constraint refers to any constraints on the

whole context table such as check constraints.

The construct table_binding is the main construct that connects

the object with its context. Specifically, table_binding has the

format below.

BINDING KEY ([col_name [, . . .]])

 REFERENCES ref_table [(ref_col [, . . .])]

 WITH bool_expr

The first part of the BINDING KEY is similar to the FOREIGN
KEY. There are three main differences between these two types of

keys. The first difference is that a foreign key in a table has to

refer to a primary key in another table. This constraint does not

exist for the binding key. A binding key binds the contextual

value to possibly more than one object, since more than one object

may exist in the same context. The second difference is that the

decision to bind a contextual value with an object does not have to

be equality with a column value in the referenced table. The

WITH construct defines a Boolean expression that serves as the

binder in case the expression evaluates to true. The third

difference is that the binding key might not contain any context

attribute referencing an attribute in the base table, but rather only

the Boolean expression that might also contain attributes from any

object context to the referenced table. Examples will be shown in

the case studies section to illustrate these differences further.

Creating User Contexts: Similar to object contexts, each user

context will materialize to a relation. Chameleon uses the

following syntax to define a user context.

CREATE [context_sign] CONTEXT context_name (

{col_spec | table_constraint} [, . . .]

, table_binding [, . . .]

[, substitution_ key [, . . .]]

) [AS contextual_relation]

[WITH UNLISTED unlisted_status];

context_sign: positive | negative

contextual_relation: equivalence

| total order [USING ordering_func]

| partial order

unlisted_status: excluded | included

For each table affected by a user context, a binding key is used to

show how the context reflects on the table. Therefore, there might

be more than one binding key in a user context. Upon the creation

of a user context, an implicit column is created to hold the user

name of the current user. Therefore, each contextual value is

associated with a certain user. Also, if an ordering relation is used

for the contextual relation, then another implicit column is created

to hold the rank of that contextual value. This rank can either be

input by the application while acquiring contextual data, or can be

computed using an ordering function ordering_func. In the latter

case, the rank column does not need to exist.

Chameleon builds default indexes for context relations. Object

contexts get non-clustered indexes on the context keys. User

contexts are clustered in a B-tree index using the clustering key

(user_name, context_key) if the contextual relation is equivalence.

If the contextual relation is a total ordering relation, then the user

context is clustered on (user name, context key) if the unlisted are

to be included and on (user_name, rank) if the unlisted are to be

excluded.

Context

Object Context
(Context of

Queried Data)

User Context
(Context of query

issuer)

User Context Sign

Positive (What
Context is)

Negative (What
Context is Not)

Contextual Relations
(How Contextual

Values are Related)

Equivalence

Partial Order

Total Order

Listing of Data

Unlisted Excluded

(out of context
data are not

listed)

Unlisted Included

(out of context
data have lower

priority)

45

The substituting key will be discussed in detail in the next section.

Populating the contextual relations will be made using standard

SQL INSERT statements. Also, other data manipulation

statements will still work on the contextual relations.

Global Substitution Construct: Some attributes need to be

modified for presentation purposes if we want to enable context

awareness. For instance, if the context is the location of a user,

and the user is currently in France, then we might want all prices,

in all tables, to be converted to Euro. This conversion is called

global substitution, since the substitution occurs for all tables

according to the current context. The substituting key defines such

conversion, and is specified while defining the user context as

follows.

SUBSTITUTE table_name (col_name)

BY expression;

The expression that substitutes the attribute can be any expression

in which attributes from table_name, its object contexts, as well as

the user context may appear. The substitute clause is useful in

limiting the disclosure of an attribute value if the query issuer is

not allowed to view that value. The substitute expression would

be to display a null value instead of the original attribute value.

Setting Active Contexts: The application user may have many

contexts, not all of them need to be current all the time. Therefore,

we introduce the construct SET ACTIVE CONTEXT to define

the current contexts to be taken into account for that user. The

user_name has the CURRENT USER as a default.

SET ACTIVE CONTEXT [FOR USER user_name]

AS context_name [, . . .];

{ [WITH RANKING ORDER context_name [, . . .]]

 | [WITH RANKING EXPRESSION expression

 | [WITH SKYLINE OF expression {MAX | MIN} [, . . .]]};

Before querying, the command SET ACTIVE CONTEXT is

issued. This command specifies the contexts to be considered

when evaluating the query. It also specifies how to prioritize and

combine multiple contexts.

The SET ACTIVE CONTEXT statement allows composing

complex contexts from basic ones. If all the basic contexts that are

used to compose a complex context have equivalence contextual

relations only, then the order of executing the contexts is given by

the order the contexts are listed in the AS clause.

In Chameleon, we support three different ways for combining

contexts (refer to Figure 6). Consider the following two contexts

C1 and C2 that are set to be active upon issuing a query. We use

two contexts for simplicity in the presentation.

Figure 6: Examples of Three Ways for Combining Contexts in

Chameleon.

Option 1 - Ordering: Using this option, Chameleon can combine

the contexts by simply listing the contexts in some order, e.g., C1,

C2. In this case, objects in the database are ordered according to

Context C1 with ties broken according to the order within C2.

Option 2 - Multi-feature Ranking: We can combine the contexts

C1 and C2 according to a weighted ranking function of C1’s and

C2’s individual ranks.

Option 3 - Skyline Ordering: Skyline ordering is needed when the

multiple contexts are independent and their ranks cannot be

aggregated together. We can combine the individual contexts by

returning the tuples that are not dominated by any other tuples

(see Figure 7). The skyline operator [18] is used for that purpose.

The WITH SKYLINE clause is used to specify to the skyline

operation which expressions to use as the input ranks in the

computation.

Figure 7: Example skyline highlighting the houses not dominated

by other houses with respect to price and closeness to the beach.

Querying given the Active Contexts: When issuing a query, the

query issuer invokes the active contexts in the following way:

WITHIN_MY_CONTEXT <Select Statement>

This command invokes the active contexts set by the SET
ACTIVE CONTEXT command when evaluating the query.

4. CONCEPTUAL EVALUATION
In this section, we show why the above constructs enable context-

aware query processing. We continue with our running example

where someone is accessing the database of a bookstore. Only the

books in stock that are relevant to the user's context are retrieved.

Examples of contexts are given, their definitions using the above

constructs are provided, and then we show how they are evaluated

to give the desired results. First, we start by simple contexts, and

later we show how these contexts are combined together to

compose more complex contexts. In all the scenarios below, the

user is executing the following query, and the results are the

relevant tuples.

SELECT *
FROM books
WHERE books.instock;

Context 1: The user has a preference for only books of a certain

category (e.g., Science fiction).

This context may be defined as:

$0

$50

$100

$150

$200

$250

$300

0 2 4 6 8

P
ri

ce

Distance (miles)

c

a

b

d

e

f hg

i

j
k

l

m
n

46

 CREATE POSITIVE CONTEXT ctxt_category_SQX (

 category varchar(20),

 BINDING KEY (category)

REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_SQX;

We give the suffix SQX to the context name above to emphasize

that it is a positive [S] context with an equivalence [Q] contextual

relation and that the unlisted categories in the context are to be

excluded [X]. For the above example, when the user issues Qu

above, the actual query that is executed is given below. Typically,

the binding key is used to join the books table with the context

table, and only the books whose category exists in the context are

to be returned. The following query reflects this semantic.

SELECT T.*

FROM books T

 INNER JOIN ctx_category_SQX C1

 ON(T.category = C1.category

 AND C1.user_name = CURRENT_USER)

WHERE T.instock;

Context 2: The user's preference is for books published in 2005,

and then those published in 2006 before all other books.

This context may be defined as:

CREATE POSITIVE CONTEXT ctxt_year_STI (

 year integer,

 BINDING KEY (year) REFERENCES books(year)

) AS TOTAL ORDER WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt year STI;

Again, the suffix STI of the current context emphasizes that it is a

positive [S] context with a total order [T] contextual relation and

that the unlisted years in the context are to be included [I]. For the

above example, in response to Qu, the actual query that is

executed is given below. Typically, the binding key is used to join

the books table with the context table. In this case, the type of join

is a left outer join, and therefore, all books will be returned at the

end. The output rows are to be sorted based on the year rank,

which is specified implicitly in the context as it is an ordering

context. Rows with NULL context rank appear later in the list.

The following query reflects this semantics.

SELECT T.*

FROM books T

 LEFT OUTER JOIN ctx_year_STI C1

 ON(T.year = C1.year

 AND C1.user_name = CURRENT_USER)

WHERE T.instock

ORDER BY C1.rank;

Context 3: The user prefers hardcover over paperback books.

This context may be defined as:

CREATE POSITIVE CONTEXT ctxt_cover_STX (

 cover integer,

 BINDING KEY (cover) REFERENCES books(cover)

) AS TOTAL ORDER WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_cover_STX;

For the above example, in response to Qu, the actual query that is

executed is given below. Typically, the binding key is used to join

the books table with the context table. The output rows are to be

sorted based on the cover rank, which is specified implicitly in the

context as it is an ordering context. The following query reflects

this semantics.

SELECT T.*

FROM books T

 INNER JOIN ctx_cover_STX C1

 ON(T.cover = C1.cover

 AND C1.user_name = CURRENT_USER)

WHERE T.instock

ORDER BY C1.rank;

Context 4: The user does not prefer (wants to avoid) any science

fiction books.

This context may be defined as:

CREATE NEGATIVE CONTEXT ctxt_category_GQI (

 category integer,

 BINDING KEY (category)

 REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_GQI;

In response to Qu, the actual query that is executed is given below.

Rows in books, whose category exists as any of the contextual

values of this context, are eliminated from the answer set.

SELECT T.*

FROM books T

WHERE T.category NOT IN (

SELECT C1.category

FROM ctxt_category_GQI C1)

WHERE T.instock;

The basic contexts, which are not composed from other contexts,

reflect in the actual executed query according to Table 2. This

table shows whether an ORDER BY clause is necessary, and

which type of join we need according to the context properties.

We use the same symbols of the context classification as in

Section 2 ([G] for negative context, [S] for positive context, etc.).

Next, we compose complex contexts from the above basic

contexts. We start with the following context.

Context 5: The user prefers books published in 2005, and then

those published in 2006 before all other books. For the books that

are similarly ranked, the user prefers hardcover books over books

with paperback cover.

This context may be viewed as the composition of ctxt_year_STI

and ctxt_cover_STX. Therefore, we do not need to define a new

47

context. Conversely, we just need to set the active context

appropriately to reflect to the desired context.

SET ACTIVE CONTEXT FOR user1

AS ctxt_year_STI, ctxt_cover_STX

WITH RANKING ORDER ctxt_year_STI, ctxt_cover_STX;

As a result of this combined context, queries to select tuples from

books will work as if the query below was executed. First, the

books in stock will be sorted based on the rank of the years, and

then in case of ties, the cover type will be considered. This

semantics is given by the following query rewrite.

SELECT T.*

FROM books T

 LEFT OUTER JOIN ctx_year_STI C1

 ON (T.year = C1.year

 AND C1.user_name = CURRENT_USER)

 INNER JOIN ctx_cover_STX C2

 ON (T.cover = C2.cover

 AND C2.user_name = CURRENT_USER)

WHERE T.stock

ORDER BY C1.rank, C2.rank;

Context Class ORDER BY Join Operation

GQN X NOT IN

SQN X LEFT OUTER JOIN

SQX X INNER JOIN

STN √ LEFT OUTER JOIN

STX √ INNER JOIN

SPN √ LEFT OUTER JOIN

SPX √ INNER JOIN

Table 2: The type of join used for each context class combination.

5. CHAMELEON PROOF-OF-CONCEPT

INSTANTIATIONS
In this section, we illustrate how one can instantiate and realize

specialized database servers using Chameleon. We begin with the

first case study: privacy-aware databases. Then, we present spatial

databases as our second case study. Finally, we conclude with two

case studies that illustrate the ideas of context composition.

5.1 Realizing a Privacy Database Server
In this section, we show how we can limit disclosure, as what

happens in Hippocratic Databases, using context awareness in

Chameleon. In Table 3, we use the same patient table used in [33].

This table contains patient personal information.

Consider a healthcare facility that owns this data. Whenever a

patient is admitted to the facility, he/she has to sign a privacy

policy. The privacy policy specifies which information is to be

released to which recipient. Moreover, the policy also specifies

for which purposes the information is to be released. On an opt-in

basis, the healthcare facility also allows patients to choose if they

want any of their personal information to be released to other

recipients. For instance, a nurse who is treating a patient is

allowed to see the patient's name, age, and phone, but is not

allowed to see his/her address for any reason. The patient may

opt-in and choose that only his/her age is to be released to charity

for solicitation.

pid name age address phone

1 Alice Adams 10 1 April Ave. 111-1111

2 Bob Blaney 20 2 Brooks Blvd. 222-2222

3 Carl Carson 30 3 Cricket Ct. 333-3333

4 David Daniels 40 4 Dogwood Dr. 444-4444

Table 3: The Patients Table.

Beside limited disclosure, limited retention is also modeled using

context awareness. For simplicity, and without loss of generality,

we assume that patient data is to be retained for 90 days only. By

the end of this period, the patient data should have fulfilled the

purposes for which the data has been collected. After this period,

different recipients cannot retrieve the data.

It is important to make it clear that the patients in this context are

the objects. Object contexts are the contexts of the patients.

Moreover, users are those that use an application at the healthcare

facility to retrieve patients' data. To model the above example of

limiting the disclosure and retention of patients' data in

Chameleon, we define the object contexts patient_privacy_pref

and policy_signature as follows.

CREATE OBJECT CONTEXT patient_privacy_pref (

 recipient varchar(30), purpose varchar(30),

 pid integer, pid_pref boolean,

 name_pref boolean, age_pref boolean,

 address_pref boolean, phone_pref boolean,

 BINDING KEY(pid) REFERENCES patient(pid));

CREATE OBJECT CONTEXT policy_signature (

 pid integer, sign_date date,

 BINDING KEY(pid) REFERENCES patient(pid));

Let the object context patient_privacy_pref contain the contextual

data in Table 4. The following user context enforces the limited

disclosure and limited retention of patients' data. Table 5 gives the

context of three users. If the three users execute the query

"SELECT * FROM patient;", they retrieve the data in Table 6.

CREATE POSITIVE CONTEXT identity_activity (

 job varchar(30), activity varchar(30),

BINDING KEY(job, activity) REFERENCES

 patient_privacy_pref(recipient, purpose)

SUBSTITUTE patient(pid)

 WITH (CASE WHEN patient_privacy_pref.pid_pref

 AND today() <= policy_signature.sign_date + 90

 THEN patient.pid ELSE NULL)

SUBSTITUTE patient(name)

 WITH (CASE WHEN patient_privacy_pref.pid_pref

 AND today() <= policy_signature.sign_date + 90

 THEN patient.name ELSE NULL)

...

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

48

recipient purpose pid

p
id

_
p

re
f

n
a

m
e

_
p

re
f

a
g

e
_

p
re

f

a
d

d
re

s
s
_

p
re

f

p
h

o
n

e
_

p
re

f

charity solicitation 1 √ √ √ √ √

nurse treatment 1 √ √ √ X √

account clerk billing 1 √ √ X √ √

charity solicitation 2 X X X X X

nurse treatment 2 √ √ √ X √

account clerk billing 2 √ √ X √ √

charity solicitation 3 √ X X √ √

nurse treatment 3 √ √ √ X √

account clerk billing 3 √ √ X √ √

charity solicitation 4 √ √ X X X

nurse treatment 4 √ √ √ X √

account clerk billing 4 √ √ X √ √

Table 4: The patient_privacy_pref object context.

user_name job activity

user1 charity solicitation

user2 nurse treatment

user3 account clerk billing

Table 5: identity_activity contextual values

 pid name age address phone

u1

1 Alice Adams 10 1 April Ave. 111-1111

3 3 Cricket Ct. 333-3333

4 David Daniels

u2

1 Alice Adams 10 111-1111

2 Bob Blaney 20 222-2222

3 Carl Carson 30 333-3333

4 David Daniels 40 444-4444

u3

1 Alice Adams 1 April Ave. 111-1111

2 Bob Blaney 2 Brooks Blvd. 222-2222

3 Carl Carson 3 Cricket Ct. 333-3333

4 David Daniels 4 Dogwood Dr. 444-4444

Table 6: Result of "SELECT * FROM patient;" for all users u1,

u2, and u3.

5.2 Realizing a Spatial Database Server
Spatial databases are optimized to store and query data related to

objects in space. This type of databases has more complex

geometrical data types, e.g., points, lines, and rectangles.

Consider a real-estate database containing information about

houses. The houses table has the following schema: houses (id,

bedrooms, price, city). An application developer is interested in

providing some spatial queries to this database, but has no

privileges to add the location of the house to this table. An object

context is created to add the location of houses.

5.2.1 Range Queries
Let the user context be the willingness to buy a house in certain

regions. Hence, a user context is created in Chameleon to declare

that only houses contained in relevant regions are to be returned.

The definitions of the object and user contexts, house_loc and

houses_in_region, respectively, are given below. The function

“contained” retrieves any house with location (x, y) that exist with

the rectangular region (x1, y1, x2, y2). The binding between

object and user contexts is through the scalar function “contained”

that retrieves only the database objects within the query issuer’s

range context. Notice that there is no prioritization for the objects

within the range, and hence the EQUIVALENCE keyword

specifies the lack of any ordering.

CREATE OBJECT CONTEXT house_loc (

id integer,

x integer, y integer,

 PRIMARY KEY(id),

 BINDING KEY id REFERENCES houses(id));

CREATE POSITIVE CONTEXT houses_in_region (

x1 integer, y1 integer,

x2 integer, y2 integer,

 BINDING KEY() REFERENCES house_loc

 WITH contained (house_loc.x, house_loc.y, x1, y1, x2, y2)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

5.2.2 Nearest Neighbor Queries
Another class of queries in spatial databases is the nearest

neighbor query. In this class, the user wants to retrieve the object

that is nearest to a pivot location. An extension to this class of

queries is the k nearest-neighbors query. The answer of this query

is the k objects that are nearest to the pivot location. In the real

estate database, a user willing to retrieve the houses listed by

proximity to a point may declare her context as follows:

CREATE POSITIVE CONTEXT nearby_houses (

x integer, y integer,

 BINDING KEY() REFERENCES house_loc

 WITH true

) AS TOTAL ORDER USING

dist(x, y, house_loc.x, house_loc.y)
WITH UNLISTED EXCLUDED;

Notice that the clause WITH UNLISTED EXCLUDED can be

omitted since all the houses are totally ordered based on distance.

The equivalent SQL query with the awareness of this context

would be:

SELECT T.*

FROM houses T

 INNER JOIN house_loc OC1

 ON(T.id = OC1.id),

 nearby_houses C2

ORDER BY dist(C2.x, C2.y, OC1.x, OC1.y)

49

Notice that for finding nearest-neighbors to a user’s location, the

binding between the database objects and the user’s focal point is

via a total order based on a scalar function “distance”.

5.3 Combining Contexts

5.3.1 Skylines
Skyline queries emerge in spatial databases. Assume that user2

wants to buy a house that is close to his work in downtown and

that is also cheap (or at least reasonable) in price. Since it is not

easy to combine such preferences in a ranking expression, user2

decides to select from the skyline houses.

Such context is defined as the composition of several contexts,

namely houses_in_region, nearby_houses, and the context price

already in the houses table. The first context will include a

bounding box representing downtown. The second and third

contexts will be used to compute the skyline. This composition is

instantiated by setting the active context as follows:

SET ACTIVE CONTEXT FOR user2

 AS houses_in_region, nearby_houses

WITH SKYLINE OF nearby_houses.rank MIN,

 houses.price MIN;

Notice that after defining the houses in certain areas, and then

defining the closeness to pivot points, the SET ACTIVE

CONTEXTS combines both of these contexts (the range context

and the nearest-neighbors context) together along with an object

context (price) that is part of the house relation to get the

SKYLINE of distance and price. This illustrates a more complex

usage of contexts to answer conjunctions of spatial predicates.

5.3.2 Location-aware Privacy
Consider an application scenario where a query issuer, e.g., a

doctor, may be allowed to access a database object’s record, e.g.,

patient’s record, only when the doctor is in the hospital premises.

Otherwise, the doctor is not allowed to access the records.

In order to realize a location-aware privacy database server, we

make use of the two contexts patient_privacy_pref and

identity_activity that we define in Section 5.1 to realize the

privacy context. For the location context, we make use of the two

simple object and user contexts (valid_location and

current_location, respectively). In this example, the location is

modeled by a string value that gives a high-level description of

the user’s or the object’s location (in contrast to physical

coordinate locations). The mapping from the physical location to

the named location is skipped here for simplicity.

CREATE OBJECT CONTEXT valid_location (

 pid integer,

 location varchar(30),

 BINDING KEY (pid) REFERENCES patient(pid));

CREATE POSITIVE CONTEXT current_location (

 location varchar(30),

 BINDING KEY (location)

 REFERENCES valid_location (location)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT identity_activity, current_location;

Notice that only the user contexts are listed since the binding

activates the corresponding object contexts.

5.3.3 Location-aware and Time-aware Privacy
The example below gives a more complex context composition of

the identity, location, and time contexts for both the database

objects and the query issuers to realize a database server that

provides both location-aware and time-aware privacy. This server

would be useful in guaranteeing that, for example, a doctor may

be allowed to access a patient’s record only when the doctor is in

the hospital but not after the hospital’s regular hours.

We make use of the contexts patient_privacy_pref and

identity_activity (defined in Section 5.1) to realize the privacy

context, the contexts valid_location and current_location (defined

in Section 5.3.2) to realize the location context, and the temporal

contexts valid_time, current_time_not_expired, and

current_valid_time, defined below.

CREATE OBJECT CONTEXT policy_signature (

 pid integer,

 sign_date date, expire_date date,

 BINDING KEY(pid) REFERENCES patient(pid));

CREATE OBJECT CONTEXT valid_time (

 pid integer,

 from_time date, to_time date,

 BINDING KEY(pid) REFERENCES patient(pid));

CREATE POSITIVE CONTEXT current_time_not_expired (

 BINDING KEY() REFERENCES patient

 WITH today() >= policy_signature.sign_date

 AND today() <= policy_signature.expire_date)

CREATE POSITIVE CONTEXT current_time_valid (

 BINDING KEY() REFERENCES patient

 WITH now() >= valid_time.from_time

 AND now() <= valid_time.to_time)

SET ACTIVE CONTEXT identity_activity, current_location,

current_time_not_expired, current_time_valid;

Notice that the user context current_time_not_expired provides

limited retention, i.e., that data is made available only for the

duration agreed upon by the data owner.

6. RELATED WORK
There have been several definitions of context and context-

awareness (e.g., see [4, 6, 7, 17, 25, 40, 43, 44]). Most of these

definitions define the context in terms of examples with special

emphasis on the location context. Similarly, there have been

several definitions of context-aware applications that include

various synonyms, e.g., adaptive applications [44], reactive

applications [16], responsive applications [19], situated

applications [25], contented-sensitive applications [42], and

environment directed applications [21]. In this paper, we adhere

with the most formal definitions given in [17]. Recently, there has

been interest in adding the context-awareness to relational

database systems and query processors (e.g., see [30, 46]).

However, the main focus is either on the modeling of the context

50

information and how to integrate it into the query definition, or on

very specific examples that consider only one type of context.

None of the previous work have discussed or proposed a full-

fledge realization of context-awareness inside a DBMS.

There has been several work for presenting preferences in terms

of relational calculus, first order logic, and query languages (e.g.,

see [14, 28, 32, 50]). In terms of query processing, there are two

extremes for preference-aware queries, namely, top-k and skyline

queries. Top-k queries have been well studied in various fields

(e.g., [9, 12, 20, 38]). Also, there have been numerous algorithms

for embedding top-k queries into database operators (e.g., see [8,

13, 22, 26, 34]). On the other hand, the term skyline queries has

been coined in the database literature [5] to refer to the secondary

storage version of the maximal vector set problem [31, 36]. Due

to its practicality, various versions of skyline queries have been

studied in the literature, e.g., sorted data [15], partially-ordered

domains [10], high-dimensional data (e.g., [11, 41, 49, 52, 53]),

progressive and online computations (e.g., [29, 39, 47]), sliding

window [35, 48], continuous skyline computations [24, 37, 51],

mobile ad-hoc networks [23], spatial skylines [45], and data

mining [27]. Unlike the case for top-k queries, there is no

previous work in integrating skyline queries at the core of query

operators or database systems.

7. RESEARCH CHALLENGES AND

CONCLUDING REMARKS
A working demonstration of the Chameleon context-aware

database management system is currently available based on

extensions to PostgreSQL. In the resulting context-aware DBMS,

Chameleon, we also implement several operators to combine

multiple contexts, mainly, the SkylineJoin, the RankJoin, and the

FilterMark operators. Figure 8 illustrates the components we

modified in PostgreSQL to realize Chameleon.

Figure 8: Extensions to PostgreSQL at Various Modules.

Based on this prototype of Chameleon, the authors have identified

the following research challenges:

Performance: In the authors’ opinion, the introduction of

context-aware database management systems as outlined in this

paper (and as depicted in Figure 1) is a profound and an important

step. The declarative approach in defining the queries in relational

databases (in contrast to the procedural approach in network

databases) was one of the main factors that made the relational

model prevail. Analogously, the declarative approach in defining

contexts in context-aware database management systems can have

a strong impact. Over thirty five years of efficient implementation

and tuning has made the relational model overcome the efficiency

hurdle. Similarly, efficient realization is the main challenge in

context-aware database management systems. Efficient realization

and execution are the authors’ main focus for future work.

Dynamic Contexts: Another important challenge is that of

dynamic contexts. So far, what Chameleon offers is static

contexts. In many application scenarios, changes take place in the

contexts, e.g., some active contexts may become inactive, inactive

ones may become active, or new contexts get introduced. Another

form of change is that the contextual values themselves within a

context may change, e.g., the surrounding temperature may

change or the location of a moving object may change, etc. These

changes may affect the query being executed. This is similar in

spirit to mid-query reoptimization [54]. However, the difference is

that when the contexts change, the system may need to augment

the query being executed by additional predicates that reflect that

change in contexts.

Expressiveness and Completeness: Finally, issues related to the

expressiveness and completeness of the context-aware model

presented in this paper need to be studied.

8. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic

databases. In VLDB, Hong Kong, China, August 2002.

[2] J. Padma, Y.N. Silva, M.U. Arshad, W.G. Aref: Hippocratic

PostgreSQL. In ICDE, Shanghai, (Mar. 2009) 1555-1558.

[3] H.G. Elmongui, W.G. Aref, and M. Mokbel. Chameleon:

Context-Awareness inside DBMS. In ICDE, Shanghai, (Mar.

2009) 1335-1338.

[4] Merriam-Webster Dictionary. http://www.m-w.com/.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline

Operator. In ICDE, 2001.

[6] P. Brown. The Stick-e document: a framework for creating

context-aware applications. Electronic Publishing, 8(2&3),

1996.

[7] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware

Applications: From the laboratory to the marketplace. IEEE

Personal Communications, 4(5), 1997.

[8] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k Selection

Queries over Relational Databases: Mapping Strategies and

Performance Evaluation. TODS, 27(2), 2002.

[9] N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k

Queries over Web-Accessible Databases. In ICDE, 2002.

[10] C.Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified Computation

of Skylines with Partially-Ordered Domains. In SIGMOD,

2005.

[11] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and

Z. Zhang. Finding k-Dominant Skylines in High

Dimensional Space. In SIGMOD, 2006.

[12] K. C.-C. Chang and S. won Hwang. Minimal Probing:

Supporting Expensive Predicates for Top-k Queries. In

SIGMOD, 2002.

[13] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,

and J. R. Smith. The Onion Technique: Indexing for Linear

Optimization Queries. In SIGMOD, 2000.

51

[14] J. Chomicki. Preference Formulas in Relational Queries.

TODS, 28(4), 2003.

[15] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with

Presorting. In ICDE, 2003.

[16] J. R. Cooperstock, K. Tanikoshi, G. Beirne, T. Narine, and

W. Buxton. Evolution of a Reactive Environment. In

Proceeding of the International Conference on Human

Factors in Computing Systems, CHI, 1995.

[17] A.K. Dey and G.D. Abowd. Towards a better understanding

of context and context-awareness. In Workshop on the What,

Who, Where, When, and How of Context-Awareness, CHI,

2000.

[18] H.G. Elmongui and W.G. Aref. Skyline-Aware Join

Operator. Tech. Rep. CSD TR 08-007, Purdue Univ., 2008.

[19] S. Elrod, G. Hall, R. Costanza, M. Dixon, and J. des

Rivières. Responsive Office Environments. Communications

of ACM, 36(7), 1993.

[20] R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top k

Lists. SIAM Journal on Discrete Mathematics, 17(1), 2003.

[21] S. Fickas, G. Kortuem, and Z. Segall. Software Organization

for Dynamic and Adaptable Wearable Systems. In

International Symposium on Wearable Computers, 1997.

[22] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:

A System for the Efficient Execution of Multi-parametric

Ranked Queries. In SIGMOD, 2001.

[23] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline

Queries Against Mobile Lightweight Devices in MANETs.

In ICDE, 2006.

[24] Z. Huang, H. Lu, B.C. Ooi, and A. K. Tung. Continuous

Skyline Queries for Moving Objects. TKDE, 18(12), 2006.

[25] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards

Situated Computing. In International Symposium on

Wearable Computers, 1997.

[26] I.F. Ilyas, W.G. Aref, A.K. Elmagarmid, H.G. Elmongui, R.

Shah, and J.S. Vitter. Adaptive Rank-Aware Query

Optimization in Relational Databases. TODS, 31(4), 2006.

[27] W. Jin, J. Han, and M. Ester. Mining Thick Skylines over

Large Databases. In PKDD, 2004.

[28] W. Kießling. Foundations of Preferences in Database

Systems. In VLDB, 2002.

[29] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the

Sky: An Online Algorithm for Skyline Queries. In VLDB,

2002.

[30] G. Koutrika and Y. E. Ioannidis. Personalized Queries under

a Generalized Preference Model. In ICDE, 2005.

[31] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the

Maxima of a Set of Vectors. Journal of ACM, 22(4), 1975.

[32] M. Lacroix and P. Lavency. Preferences: Putting More

Knowledge into Queries. In VLDB, 1987.

[33] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y.

Xuy, and D. DeWitt. Limiting disclosure in Hippocratic

databases. In VLDB, 2004.

[34] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL:

Query Algebra and Optimization for Relational Top-k

Queries. In SIGMOD, 2005.

[35] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky:

Efficient Skyline Computation over Sliding Windows. In

ICDE, 2005.

[36] J. Matousek. Computing Dominances in En. Information

Processing Letters, 38(5), 1991.

[37] M. D. Morse, J. M. Patel, and W. I. Grosky. Efficient

Continuous Skyline Computation. In ICDE, 2006.

[38] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S.

Vitter. Supporting Incremental Join Queries on Ranked

Inputs. In VLDB, 2001.

[39] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive

skyline computation in database systems. TODS, 30(1),

2005.

[40] J. Pascoe. Adding Generic Contextual Capabilities to

Wearable Computers. In International Symposium on

Wearable Computers, 1998.

[41] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the Best Views

of Skyline: A Semantic Approach Based on Decisive

Subspaces. In VLDB, 2005.

[42] J. Rekimoto, Y. Ayatsuka, and K. Hayashi. Augment-able

Reality: Situated Communication Through Physical and

Digital Spaces. In Intl. Symp. on Wearable Computers, 1998.

[43] T. Rodden, K. Chervest, N. Davies, and A. Dix. Exploiting

Context in HCI design for Mobile Systems. In HCI, 1998.

[44] B.N. Schilit and M.M. Theimer. Disseminating Active Map

Information to Mobile Hosts. IEEE Network, 8(5), 1994.

[45] M. Sharifzadeh and C. Shahabi. The Spatial Skyline Queries.

In VLDB, 2006.

[46] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding Context

to Preferences. In ICDE, 2007.

[47] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive

Skyline Computation. In VLDB, 2001.

[48] Y. Tao and D. Papadias. Maintaining Sliding Window

Skylines on Data Streams. TKDE, 18(2), 2006.

[49] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient

Computation of Skylines in Subspaces. In ICDE, 2006.

[50] G.K. Werner Kießling. Preference SQL - Design,

Implementation, Experiences. In VLDB, 2002.

[51] T. Xia and D. Zhang. Refreshing the Sky: The Compressed

Skycube with Efficient Support for Frequent Updates. In

SIGMOD, 2006.

[52] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang.

Efficient Computation of the Skyline Cube. In VLDB, 2005.

[53] Z. Zhang, X. Guo, H. Lu, A. K. H. Tung, and N. Wang.

Discovering Strong Skyline Points in High Dimensional

Spaces. In CIKM, 2005.

[54] N. Kabra, D.J. DeWitt: Efficient Mid-Query Re-

Optimization of Sub-Optimal Query Execution Plans.

SIGMOD Conference 1998: 106-117.

52

