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Abstract

Trending topics are words or phrases that are frequently
mentioned in social media. Trends differ from one geo-
graphical location to another, and often reflect the most
popular events that happen in the world. Limited work has
been done to analyze the relation between trends and geog-
raphy.However,the current information diffusion models are
not suitable at the geographical locations level as they were
targeting users. In this paper, we present TrendFusion, an
innovative model used to analyze and predict the localized
diffusion of trends in social networks. In other words, we try
to answer the following questions: Can we predict in which
locations will a trend be appearing in the future? Can we
predict when will it happen?

We demonstrate this by comparing our model to the
widely accepted General Threshold model. Results show
that TrendFusion accurately predicts places in which a
trend will appear, with 98% recall and 80% precision.

1 Introduction

A plethora of users embracing the online social media has
greatly impacted the way how information propagates. The
online social media give the users the ability to create, dis-
cuss and disseminate information. As information diffuses
from one user to another, some topics become of interest
to only small groups of users, thus do not become widely
adopted and could fade away quickly. On the other hand,
some topics are of interest to many users, who in turn in-
fluence more and more users. When this snowball effect
reaches a sufficiently large group or community of users, a
topic is considered a trending topic. Most of the time the
trending topic can be discovered by a certain word or phrase
that is repeated in most of the users interactions.
Studying trending topics in online social networks is cru-
cial since these topics represent the ideas and interesting
themes that are currently discussed by a large number of
users and, more or less, the general public. Trending top-
ics can be observed at a global level or can be localized
to the users in certain locations, such as the residents of
a certain city. Studying localized trending topics helps to
understand the interests of residents of the targeted local
area. So far, trends have been studied as a way to detect
real-world events discussed in social media [5, 13], emerging
topics [41], or news of interest for the online community. On

the other side, geography plays an important role in various
aspects of our lives. However, proliferation of online social
networks has significantly decreased the virtual distance be-
tween the users. Yet, geographical locality still matters in
our choice of friends [40], as well as topical interests [25].

Our assumption is that as users influence each other at
the personal level, users in one location have a collective
mutual influence over users in another location [10]. This is
consistent with the first law of geography [24], “Everything
1s related to everything else, but near things are more related
than distant things”. Based on this assumption, we devel-
oped TrendFusion, a model for predicting localized trends
diffusion from one localized community of users to other ge-
ographically separated communities of users. We conducted
our experiments on the trending topics collected from Twit-
ter. Accordingly, we show that observing the local trends for
some locations can enable predicting other locations where
these trends will appear. Other trending topics prediction
models rely on analyzing the activities of the users to be
able to predict a trending topic. Thus the prediction can
only be in range of few hours before the topic becomes a
trending one.

The most important aspect of TrendFusion is that it al-
lows predicting trends that will appear in some location,
before even the users in that location start mentioning that
topic. This is extremely useful in many cases, such as
marketing, choosing areas to target in political campaigns,
building a proactive localized recommendation system for
topics or for early prediction of protests and strikes.

Our contributions are as follows:

1. Deriving a new information diffusion model (Snowball
Cascade Model) in social networks that is suitable to
model the diffusion between geographically separated
communities in social networks, rather than relying on
the users social network structure. The model is then
extended to account for more than one explanatory
variable.

2. Developing TrendFusion, a predictive model that pre-
dict whether the trending topics will appear for some
location in the future, along with the activeness time,
i.e., the time it will appear.

The remainder of the paper is organized as follows. First
we give an overview of the related work in Section 2. A
complete description of the model and its components will



be described in Section 3 followed by the experimental re-
sults in Sections 4 and 5. Finally, conclusions and future
work are provided in Section 6.

2 Related Work

We first describe information propagation in social networks
and then discuss the work related to the study of trending
topics.

2.1 Information and Influence propagation
in Social Networks

In recent years, information propagation on social networks
has been attracting much attention in academic and indus-
trial circles [30]. Understanding the mechanisms of infor-
mation propagation is vital to finding the factors affecting
the information propagation process. These factors, in turn,
provide a better explanation for predicting information pop-
ularity [4], and initiating a viral marketing campaign [12].
This can be formulated as inferring and estimating the prop-
agation probability that a piece of information propagates
from one individual to another along social links connecting
them.

Previous research had identified two factors that affect
the information propagation process: the importance of the
information, and the level of interactions between users.
The existing research approaches for the first factor mainly
consider the analysis of the messages propagation and the
decay with respect to the time since the posting of the mes-
sage [22]. Most of these approaches are descriptive. How-
ever, our approach is predictive.

For the second factor, the level of interactions between
users, the current research efforts focus on the interactions
between the users, along with the geographic, demographic,
topical and contextual features that affect the propagation
between the users [2, 14, 22]. For example, Galuba et al. [16]
proposed a propagation model that predicts which users will
tweet about which URL based on the history of past user
activity. Agarwal et al. [1] studied the problem of identify-
ing influential bloggers in the blogosphere.

As our model analyzes and predicts the localized diffusion
of trends in social networks between locations, our work is
different in that it doesn’t take into account the social struc-
ture of the social networks. It is prohibitively complex to
include the social structure connections relating the loca-
tions. Another point is that the location information posted
by the user is not always available or accurate. Our work
is also different from the research that studies relationship
between geography and information diffusion, as in [9], as
our model consider other non-geographical parameters.

2.2 Trends in Social Networks

Trending topics in Twitter are words and phrases, appear-
ing on the main page of Twitter, that are currently popular
in users’ tweets, and are identified for the past hour, day and
week. They represent the popular topics of conversations
among the Twitter users [28]. Trends in social networks
have recently been a focus of interest for many researchers.

Some researches focused on studying trends from a tem-
poral view [28, 29]. Kwak et al. compared the trend-
ing topics generated by Twitter to other social media [28].
Leskovec et al. also studied the temporal properties of infor-
mation shared in social networks by tracking memes across
the blogosphere [29]. Some researches were interested in
studying the structural nature of the social graph that leads
to creating the trends [6, 8].

Other studies focused on studying the dynamics, the
growth and the decay of the trending topics [3, 43]. Asur
et al. studied the trending topics on Twitter, and provided
a theoretical basis for the factors affecting the formation,
persistence and decay of trends [3].

Limited work has been done to analyze the relation be-
tween trends and geography. A closely related work was
presented by Kamath et al. [26] and Ferrara et al. [15]. Ka-
math et al. modeled the social media spread in different
locations by trying to predict the top K cities in which a
topic will be trending [26].

Ferrara et al. investigated the spatial and geographic
dynamics that govern trending topics in Twitter. However
their goal was different, as they aimed at studying what dy-
namics underlie the production and consumption of trends
in different geographic areas In other words, they wanted
to know if trends travel through the Internet, or by people
physically traveling across cities [15].

3 TrendFusion Framework

In this section, we first describe some of the main concepts
and definitions, followed by a detailed explanation for our
model.

TrendFusion model relies on the information cascade con-
cept to represent the flow of a piece of information, usually
called the contagion, through a social network [11]. The
cascade is usually represented as a directed acyclic graph
(DAG). Figure 1 represents an example of information cas-
cade, where
Nodes: are the entities (such as users, groups or cities).
The nodes represent locations in our model.

Edges: represent the information propagation between en-
tities.

Seeds: are the vertices that initiate the cascade.

An activation step (or a step): Every time a given trend
appears at the same time at one or more entities corresponds
to an activation step, or simply a step, in the cascade.

A Cascade: is a sequence of activation steps generated by
a contagion process. The weights on the edges represent
the influence of an active entity on an inactive one. The
way to calculate these influences and how an inactive node
responds to them are specific to each model.

The two main objectives of TrendFusion are:

1. Predict whether a trend will appear for some location
based on its diffusion in other locations.

2. Predict when the trend will appear.
The problem we are trying to solve can be defined as:

e Given: A history of spatially and temporally tagged
trending topics in a number of locations.



Ly N
R . |
|

Locaﬂion_é\%:t[_}cpr_\ B3F

_—1 — T~
. _Ber | \Bca ‘“il m
T B— N ——

B e / Location F
;‘4 —PPF \ [

— | Bec——4_ _\ \:
Bac_ | Ber %
_ S+ _7_7,_:;7 |

{' BE— éaEG Location G

I \\ _B?G |

: Local{ion E Per »,&’ :
t t t

’ ! ' ! ) ! Time>

Step 0 Step 1 Step N

Figure 1: An information cascade represented by a Directed
Acyclic Graph (DAG).

e Processing: Define a model that can extract and cap-
ture the dependency relations between these locations.

e Output: When a topic is trending in some locations,
use the model to predict where and when this topic
will be trending next.

3.1 TrendFusion Model

We now provide the statistical foundations of the TrendFu-
sion model.

Generally, most information diffusion models assume that
the considered entities (such as users, groups, etc.) are con-
nected by a social graph, and that the graph structure is
known beforehand. In our case, there is no such social
graph connecting the locations together. Thus, before ap-
plying any known diffusion model, we need first to infer the
underlying hypothetical graph that describes the influence
between locations. Fortunately, several network inference
models have been developed recently [19, 20, 33, 34, 38].
These algorithms estimate the underlying network struc-
ture given past activation times.

In TrendFusion model, we assume a fully connected
graph, and estimate the transmission rates along the edges
using NetRate algorithm [19]. We based our assumption of
the fully connected graph on the first law of geography by
Tobler [24]. We start with a fully connected graph of the
locations and estimate the transmission rate between each
pair of locations using NetRate. The lowest transmission
rates are then omitted reducing the edges (connections) be-
tween the locations.

NetRate algorithm estimates the transmission rates, not
just a binary on/off value. The algorithm takes the input in
the form of information cascades. The NetRate algorithm
relies on the survival theory and the concept of hazard rate
that will be explained shortly [21].

3.2 Generating the Hazard Rate Graph

After converting the activations to different cascades of
trends between locations, we compute the pairwise hazard
function between these locations. The hazard rate is mostly
related to the survival theory [21], and can be described as
the instantaneous activation rate between two locations @
and j [19], i.e., how likely is it that location j will adopt a
trend at time ¢;, if location ¢ adopted that trend at time ¢;
(Equation 1).
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where f(t;]t;) is the conditional likelihood of transmission
from location i to location j. Likelihood depends on the ac-
tivation times t; and t; (i.e, the time the trend first appears
in location ¢ and location j), and a pairwise transmission
rate A; ;. The transmission rate A; ; models the strength of
an edge (i,7), and determines how frequently information
spreads from location 7 to location 7. The most commonly
used parametric models for the shape of the conditional
transmission likelihood are the exponential, power-law, and
Rayleigh distributions models [21]. S(¢,]¢;) in Equation 1
refers to the survival function computed for the edge con-
necting the locations ¢ and j. It is computed as the prob-
ability that location ¢ does not cause location j to activate
by time t; as in Equation 2:

(1)

S(tiltis Nij) =1 = F(t;lti; Ai j) (2)

where F(t;]t;) denotes the cumulative density function
computed from the transmission likelihoods. The generated
graph is used in our model as a measure for the influence
between locations.

3.3 TrendFusion stages

TrendFusion consists of five stages. The first three stages
can be shared across the locations of interest. Stages four
and five should be repeated for each location. The five
stages of TrendFusion model are shown in Figure 2.

3.3.1 Stage 1: Collect Trends From Locations

Trends should be collected from all the locations of interest.
The trends are continuously collected every At time units.
If social media does not reveal the localized trending topics,
an extra step of monitoring user activities and extracting
the trending topics is needed.

3.3.2 Stage 2: Store Trending Topics Stream

As the stream of the trending topics is received, they are
labeled by the location/time they were received from/at.
The trending topics are stored for further analysis.

3.3.3 Stage 3: Build Cascades

Since trending topics are continuously polled every fixed
time step, it is not always clear if a trend is a beginning of
a new cascade or a continuation of an old one. Therefore,
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Figure 2: The stages of TrendFusion model.

a process is needed to build cascades from trending top-
ics that are retrieved every At. Algorithm 1 provides the
details of the cascades building process. The process be-
gins by chronological ordering of all received spatially and
temporally tagged trends (Activations List), where one ac-
tivation represents a record of (¢rend, location and time).
The algorithm first determines if an activation should be
part of an earlier cascade or it should be considered as a
seed for a new cascade. Ferrara et al. [15] state that the life
time of almost all trends does not exceed 24 hours. Thus
we consider a trend to be a seed for a new cascade if it was
not trending for more than 24 hours. The algorithm then
determines whether or not to consider this activation as a
new step. If the location did not appear before in the cas-
cade, then this is a new step. Otherwise, this is considered
an update to the location activity times.

3.3.4 Stage 4: Extract Parameters

This stage is done for each location. In a given cascade,
every location that appears in that cascade will have a dis-
tinctive set of parameters. The parameters are calculated
mainly based on the diffusion model used as will be ex-
plained in sections 3.4 and 3.5. For example, an average
distance parameter will be calculated between a given lo-
cation and all its parents or ancestors depending on the
diffusion model. There are four main classes of the param-
eters:

¢ Diffusion Parameters (Hazard rate): is the value repre-
senting the activation rate between any two locations
calculated over all cascades.

— Maximum hazard (maz_hazard).

— Sum of hazards (sum_hazard).

e Geographical Parameters: these features are used to
examine the geospatial properties of the trending topics
spread.

— Geographical  distance  between  locations
(shrt_dist):  indicates the shortest distance
between locations and whether these distances
affect the appearance of trends in these locations.
For this, we have used the Haversine distance,

Algorithm 1 Build Cascades

Procedure BuildCascadesFromActivations
Input ActivationsList al
begin
// An activation a is a record a = (trend, location, time)
ActivationsList alo < Order al by time
for all Activation ¢ in alo do
if a.trend appeared in (a.time - 24 hours) then
cas <+ last cascade of a.trend

if

a.location appeared in cas then
Add a.time to instances of a.location in cas

else if a.time equals time of last step in cas then

Add a to last step of cas

else

Add new step to cas containing a.location

end if

else

Create new cascade cas
Add new step to cas containing a.location

end

if

end for

end

which is commonly used to measure the distance
between locations based on the spherical shape
of the Earth (as compared to Euclidian dis-
tance) [37]. Average distance between locations
(avg_dist) are also calculated.

Coverage (cur): is a spread over geographical area
of a trend S at time ¢. The area which the trend
covers is determined by getting the area of bound-
ing box in which the trend appeared. For the
bounding box area, we determined the bound-
ing locations (north east, north west, south east,
south west) in which each trend appear. We then
calculated the area using the Haversine distance
between the boundaries

e Historical Parameters: these parameters describe the
path characteristic of each trend through all locations.
Their values are based on previous cascades.

Trending topics similarity between locations
(simy) [26]: the similarity parameter is used to
measure the trending topics similarity between lo-
cations. For measuring the similarity, we used the
Jaccard coefficient between the sets of trends ob-
served at each location, as shown in Equation 3:

| Miocation; "Miocation; |
u\/llocationi UZ\/Ilocationj |

(3)
where Mjocation; is the set of trends appeared in
location;. A similarity score of 1 means that all
trends are common between the two locations. A
score of 0 means that no trends are in common
between the two locations. Average similarity is
calculated over all trends.

simy (location,, location)
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Figure 3: Time tracking of trends’ appearances in locations
i,].

— Average gap (avg-gap): for each trend appearing
between two locations, the gap is calculated as the
time difference between the end time in location ¢
and its appearance in location j. It is calculated
over all trends.

— Overlap time: for two locations ¢ and j the over-
lap time is calculated as the difference between
trend’s end time in location i and its appearance
in location j, given that (t; ena > tjstart). Aver-
age overlap time is generated over all cascades.

— Average trend age (avg_age): quantifies the aver-
age time of trend’s appearance within the social
network.

Figure 3 illustrates calculating time differences between
trends’ appearances in locations.

e Trend Parameters: these features include information
about the relationship between locations based on the
current cascade.

— Trend’s rank (sum_rank): as Twitter provides a
trends box that contains the top 10 trending top-
ics, ranked according to their popularity. The
trend’s rank differ when the trend list is updated
every 5 minutes.

* Maximum rank (sum_rank): the highest rank
reached by each trend in each cascade. The
sum of trend’s ranks over all cascades is also
computed.

* Weighted sum of trend’s rank
(weighted_sum_rank):  indicates whether
or not the trend’s rank has effect on the
transmission rate. It is calculated as a sum
of trend’s ranks multiplied by the hazard
rate between two locations.

— Number of parents / ancestors (num_parents /
num_ancestors): the number of parents and an-
cestors’ locations for each location/cascade.

3.3.5 Stage 5: Model Learning/Using

As locations are different, a distinct predictive model is
needed for each location. The model should learn the pa-
rameters extracted from the previous stage and should be
used to predict if a new cascade will appear in that location.
For this, we utilized two diffusion models. We first use the

widely used General Threshold model (GT) as our base-
line, and then we present our information diffusion model,
the Snowball Cascade (SC) model.The differences between
the two models will be described in details in the coming
sections.

3.4 The General Threshold (GT) Model

One widely used cascade model is the Generalized Thresh-
old model (GT) [27, 35]. Its primary focus is on the in-
formation diffusion within users in a social network. Con-
ceptually, as any other information diffusion cascade model,
the GT model tries to predict whether or not a certain piece
of information will get adopted by different nodes in a so-
cial network. Generally, there are three types of nodes:
active, contagious, and inactive. Given a piece of informa-
tion, inactive nodes are those nodes that did not adopt that
information yet, active nodes are the nodes that adopted it
already, and the contagious nodes are the nodes that are
trying to influence other nodes of adopting it. Once a node
is activated, it will remain active till the end of the cascade.

Initially, other than the seed nodes, all the other nodes are
considered inactive. The seed nodes are those nodes that
initially introduce that information to the network. At the
beginning of the cascade, seed nodes are activated. Once
a set of nodes is activated, they become contagious and
only try once to collectively influence other inactive nodes.
Once they are done, they are no longer contagious but they
remain active, i.e., they will no longer try to influence other
nodes.

Figure 4 shows an example of two steps for four nodes.
In Figure 4a, two nodes are contagious, both trying to in-
fluence the two inactive nodes. The (s on the edges are
influence rates between the corresponding nodes. The func-
tion box in the GT model is just a summation operation
followed by a condition to check that the sum is below a
certain threshold. The threshold is a specific property of
each node, i.e. the threshold is different from one node to
the other. If the sum exceeds that threshold, the node be-
comes contagious; as in the second step shown in Figure 4b.
The second step shows that one of the inactive nodes, got
infected and became contagious itself, and the other one
was not affected. The two contagious nodes in step one, be-
came active in step two. This means that they are already
infected but will not try to influence other node anymore.

Formally, the GT model is described as follows. Consider
a directed graph G = (V, E), where V is the set of vertices
representing locations, and E is the set of weighted edges,
with weights w,,, representing the influence rate of the edge
eww € F from location u to location v. Let N, be the set
of vertices with edges going into v, and S; be the subset of
N, that are active at time ¢t. For every vertex v there is
an activation function f(), such that at time ¢, if f(S;) >
0., vertex v becomes active at time ¢t + 1. In the original
model, the value of 6, is randomly chosen from a uniform
distribution in the interval [0, 1]. In our evaluation, we rely
on statistical classifiers to estimate the likelihood value of
0.

Although the GT model was performing well in modeling
the information diffusion between users, we find that it was
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Figure 4: Steps of General Threshold model

not suitable to model the diffusion between locations with
large communities of users (i.e., cities), as will be demon-
strated later by our results. Thus, we are proposing a new
cascade model (Snowball Cascade Model) that generalizes
the GT model. The new model, along with the differences
between the GT model and our model are described in de-
tails in Section 3.5.

3.5 The Snowball Cascade Model

The central part of TrendFusion is a new cascade model,
Snowball Cascade (SC) Model. We consider that the as-
sumption in the GT model that the influence of a node
(location) only happens one time is unrealistic. Thus, in
the SC model, unlike the GT model, an activated node will
always be contagious, i.e., it will keep trying to influence
other nodes.The rational behind the continuous influence is
simple: As long as a topic is trending in a location, this in-
terest can affect other locations. The GT model will fail to
differentiate between the influence of quick and outstretched
trends. Thus in the SC model, the number of active nodes
in the system that are trying to spread the influence will
grow over time. Active nodes try to influence other nodes
which, if activated, become contagious and try to influence
other nodes, and so on. This snowball effect is the reason
behind the model name.

Yet another difference between the two models is that in
SC model, the edge weights are vectors rather than scalars.
The vector values change from one activation to the other.
This is different from the GT model, where the edge weights
are required only to be fixed scalars. The vectors on the
edges represent the set of parameters that might affect the
influence between a contagious location and inactive loca-
tion at a given step of a cascade.

The SC model is also different from the well known
VARMA model [31]. As the VARMA model is used for
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Figure 5: Steps of Snowball cascade model

analysis and predicting future values of a time-series. Un-
like the VARMA model, the SC model is an information
diffusion model, not a multi-variate time series model. The
SC model defines how the nodes influence each other at
every time step. It also defines how to combine different
parameter values from active nodes to construct the param-
eter vector. In fact, many parameters, e.g. the distance, in
the influence vectors cannot be regarded as a time-varying
processes.

Figure 5 shows an example of a cascade in SC model. The
3 values on the edges represent vectors containing the influ-
ence rates along with other parameters that are described
in 3.3.4. The main difference between Figures 4 and 5 is
in the second step, where in the SC model, the contagious
nodes remain contagious, and keep on trying to influence
other inactive nodes till the end of the cascade.

Formally, the SC model can be described as follows.
Consider a directed graph G = (V,E), where V is the
set of vertices representing locations, and E is the set of
weighted edges, with weights ,Bfw of edge ey, € FE rep-
resenting the influence rate from location u to location v
at time step t. Let N, be the set of vertices with edges
going into v, and S; be a subset of N, with the vertices
that are active on or before time ¢t. For every vertex v
there is an activation function f(), such that at time ¢, if
f(,@iov,,ﬂtuw,...,,@inv) > 0, Yu; € S, vertex v becomes
active at time t+ 1. The value of 8, can be learned for each
location by a binary classifier.

According to the definitions of the two models, the GT
model can be considered as a special case of the SC model,
where the B vectors are reduced to a fixed scalar (infleunce
rate), and the 8 = 0, for all nodes that are already active
before time t.



4 Evaluation

We now describe the methodology used to generate our
dataset, and then we describe in details the results of every
stage in our model.

4.1 Trending Topics Dataset

To build our dataset we used Twitter APIs [39] to collect all
trending topics appearing on Twitter for a period of 30 days,
starting from August 2014 until September 2014, in 48 of
the most populated US locations (cities). Twitter provides
a trends box that contains the top 10 trending hashtags
or phrases at any given moment, ranked according to their
popularity. These trending topics, along with their rank is
updated every 5 minutes. Each user can monitor the trends
at the worldwide, country, or city level.

We deployed a crawler to get the trends every 5 minutes
for the 48 cities. We also collected all trends reported by
Twitter for the United States and the whole world. To mask
the effect of global trends in our experiments, we filtered out
the trends for the cities, that appeared in the U.S. trends
or the global trends. We ended up collecting more than
400K different trends. The data is stored as tuples of the
form: (woeid, trendy, trendy, ..., trendg, date/time) where
woeid is Yahoo Where On Earth ID (WOEID) [44] and
trendy, .. .,trendyg are the top 10 trends. Figure 6 shows
the histogram of the distances between the 48 cities, where
the x-axis represent the upper limit of each distance bin in
miles.

4.2 Applying TrendFusion Framework

Steps

As mentioned earlier, the steps presented in Algorithm 1 are
used to convert the data collected from previous step into
cascades. We then use the MATLAB®implementation of
NetRate algorithm [18] to build the influence graph for all
locations. This implementation assumes linear DAG for cas-
cades, i.e., it assumes that each step in the cascade consists
only of one location. However, the Snowball Cascade model
allows multiple locations per cascade step. So the algorithm
was modified slightly to account for this difference. The
modified NetRate is used to generate three graphs, one for
each assumed distribution for the hazard rate. The graphs
from NetRate are then used with the cascades to generate
the training and testing examples for each location.

For each location, we generate the training file containing
the examples for the first 22 days of the data and a testing
file containing the remaining data. The extracted param-
eter was based on the Snowball Cascade model. We also
used the GT model as a baseline, so training and testing
data was also generated for it. Each of the parameter vec-
tors is augmented by one class and one dependent variable.

Given a cascade, when generating the training examples
for a given location, an example is generated for each step
in the cascade before that location appears in it. For ex-
ample, if a location appeared in step n, we generate n — 1
examples for each step before that location appeared. If the
location doesn’t appear in the cascade, then the number of

examples generated will be equal to the number of steps in
the cascade. The class values are set to be the appearing
or not appearing, depending on whether or not the location
appeared in the cascade. If the class value is appearing,
then the dependent variable value is set based on the lag
value between the time at the cascade step and the time
the trend appeared in the location.

We used the parameter vectors for each cascade for indi-
vidual trends to train three classifiers:

e Logistic Regression (LR), a probabilistic statistical
classification model [32].

e Stochastic Gradient Descent (SGD) classifier [17].

e Random Forest (RF), ensemble learning method clas-
sifier [7].

We used Weka [23] and R [36] statistical packages to
train the three classifiers and afterwards use them to pre-
dict whether or not the trend will appear in the designated
location.

4.3 Experiments
The evaluation includes five experiments:
1. Predict trends based on individual steps.
2. Predict trends considering each cascade as a whole.

3. Determine the effect of each parameter on the classifi-
cation process.

4. Determine the average time a topic can be predicted to
be trending before it actually becomes trending.

5. Predict when a trend will appear.

5 Results and Discussion

We evaluated the performance of TrendFusion by running
our training and testing examples through the three classi-
fiers. Each example represents a step in a cascade. We used
the widely adopted GT model as a baseline to compare its
performance with TrendFusion. We recorded two quality
measures in our experiments, recall and precision.

Here recall indicates the ratio of the number trends we
were able to predict to the total number of actual trends.
Similarly, precision indicates the quality of our prediction,
i.e., the ratio of the number of topics that actually become
trending in our predictions to the total number of topics we
predicted will be trending.

In the first experiment, we considered the output from
each individual example. This means that at each step, we
take a decision regardless of other steps in the cascades.
Figure 7 shows the recall and precision values obtained by
TrendFusion and the GT models using the three classifiers.
It is clear that TrendFusion was giving the same perfor-
mance across the different classifiers with a recall value of
around 0.71 and precision around 0.84. This means on av-
erage 84% of the predicted trend will be actually trending.
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Figure 7: Average precision and recall for TrendFusion and GT models considering cascade steps.

On the other hand, the GT model recall values were in the
range between 0.47, 0.48 and 0.5 for the LR, SGD and RF
classifiers respectively, which means that it misses around
half of the trends. The precision values were 0.78,0.75 and
0.71 for the same three classifiers. This means that the slight
increase in the recall was accompanied with more false pos-
itive predictions.The results therefore show that the GT
model is not suitable for modeling the diffusion of trending
topics between locations.

In the second experiment, we evaluated each cascade as
a whole, getting one decision for the whole cascade. For a
given location, we set the class value to be appearing for the
cascades in which the location appeared, and not appearing
for the cascades in which the location didn’t appear. The
classification is performed on each step, then the predicted
values are reduced to one value for the whole cascade. If the
predicted value at any of the steps is appearing, we consider
the combined prediction as appearing, as if doing a logical
OR. The reason behind this way of classification is that the
class is assigned at each step based on the fact whether or
not the location appeared later in the cascade. So at an
early step in reality, that might not have any influence on a
given location that appeared later in the cascade, the class
is still assigned as appearing. This is due to the fact that

we do not have ground truth data.

A false positive prediction is considered to be made in a
cascade where a given location didn’t appear, if at any step
an appearing class is predicted. The logic of this classifica-
tion process is detailed in Algorithm 2.

Figure 8 shows the average recall and average precision
values for the TrendFusion and GT models for the sec-
ond experiment with the same three classifiers as before.
The average recall values for TrendFusion improved greatly.
This means that in the first experiment, TrendFusion made
wrong not appearing predictions at the beginning of the
cascades that are neutralized in this experiment by a later
correct appearing prediction. Values for recall are 0.96, 0.98
and 0.99 for LR, SGD and RF classifiers, respectively.

On the other hand, precision dropped slightly to around
0.8 for the LR and SGD classifiers and to 0.71 for the RF
classifier. This also means that one wrong appearing pre-
diction at any step of cascade in which a given location did
not appear, will cause the overall prediction to be considered
wrong. Although, the average recall is slightly improved for
the GT model, it still in the range of 0.5 to 0.56 for the
three classifiers. The average precision also dropped as ex-
pected to the values of 0.65, 0.65 and 0.51 for LR, SGD
and RF classifiers, respectively. This still point out that
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even though that the GT model was good in modeling in-
formation diffusion in a social graph at the users level, it is
not suitable to model the trending topics diffusion between
locations.

These two experiments were conducted using the trans-
mission rates generated by the modified NetRate algorithm
assuming exponential distribution. We also examined the
two distribution models (power-law and Rayleigh) to de-
cide the shape of the conditional transmission likelihood,
and to analyze the effect of changing them on the classifi-
cation process. The experiments were repeated using the
other two distributions. The results were very consistent
with the results obtained for exponential distribution. The
variation in the results obtained in all experiments did not
exceed 1%.

The third experiment was conducted to measure the ef-
fect of each parameter on the classification process. This is
achieved by ranking all the parameters according to their
average information gain. Figure 9 shows the rank of each
parameter used in the classification process.

We observed the following:

e Geography matters: it is clear from Figure 9 that loca-
tions that are geographically near each other are most
likely to influence each other in the social context.

e The similarity in interests and diffusion parameters are
also of high importance: locations that are similar in
the trending topics in the past, are more likely to have
the same trends later on. Also, cities with high com-
bined diffusion rate to a given city, will have high prob-
ability to affect it.

e Trend parameters are the least important: although
locations may be influencing each other, the rank of
the trending topic in one location is not affecting its
rank in the other location. This might be due to the
fact that each location has different interests in topics.
This also means that it does not really matter in how
many locations did a topic appear in, to be influential

to other locations, it might just give an indication of
how globally important is that topic.

e The remaining parameters were equally important.

The fourth experiment explored the average time a topic
can be predicted to be trending before it actually becomes
trending. Figure 10 shows the average time before a trend
can appear. The z-axis represents the lag time between the
beginning of the cascade and the time a trend will occur.
The y-axis represent the time before a trend is predicted as
trending. This shows that we are able to predict the topics
on average 3 hours before they actually trend.

In Figure 10, we noticed a drop at value 17 of z-axis. We
investigated the possible reasons for this drop. We found
that the number of trends that appeared in new cities after
17 hours are relatively much less than different hours. To
find out the reason for that, we used the facts presented
by Upbin [42] that shows the average Twitter activity by
hour. Upbin showed that the user activity is highest be-
tween 9 AM and 2 PM, and lowest between 1 AM and 6
AM. According to this, We assumed that most trends are
formed during the high activity intervals. The first four hor-
izontal lines in the Figure 11 represent different timezones
in the US. The upper represent Eastern time, then Cen-
tral, Mountain, and finally Pacific. The red peaks represent
high activity time at each timezone. The blue troughs rep-
resent low activity intervals. The lower line represent the
combined activities, and it shows that the highest activity
in the US happens around 1 PM Eastern, and the lowest
activity happens around 6 AM Eastern. The difference be-
tween these numbers is 17 hours, thus the trends will not
be trended within this gap, hence the drop in number of
trends that happen after 17 hours.



Algorithm 2 Classify Cascade

Procedure ClassifyCascade
Input Location [
Cascade cas
begin
// Determine the class for the whole cascade
countirye_positive < 0
Countfalse,positive <0
counttrue,negative «0
Countfalse,negative <0
if [ appears in cas then then
class < appearing
else
class + notappearing
end if

// Collective classification for all steps
for all step s in cas do
prediction < classify_at(s)
if prediction is appearing then
if class is appearing then
Counttrue,positive — counttrue,positive +1
else

Countfalse,positive — Countfalse,positive +1
end if
return
end if
end for

// At this stage, prediction should be not appearing
if class is not appearing then

Counttrue,negative <~ Counttrue,negative +1
else

Countfalseji,egative — Countfalse,negative +1
end if
end
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Figure 11: Activity times over 24 hours for users on Twitter.
Red: highly active window, Blue: low active window.

In the fifth experiment we tried to predict when a trend
will appear. The training and testing examples in this case
are labeled by the time lag between each step and the step at
which the trend appeared in a given city. We trained a linear

Information Gain

Parameter

Figure 9: Rank of each parameter used in the classification
process.

(=2l

w

S

w

~

Time todetect (Hours)

SN N O~ AN N O N0 AN+
HHHHHHHHHHNNNN:

Time to trend (Hours)

Figure 10: Lag analysis for predicted trends.

regression model and used it to try to predict when will the
trend happen. Figure 12 shows a histogram where the bins
(z-axis) represent the error in prediction in hours. The
results shows that most of the predictions were around zero
error. The bimodal peaks is probably due to the activity
windows described in Figure 11, where the high activity
interval makes the trends travel faster, and the low activity
window makes the trends be delayed in traveling.

6 Conclusion

We proposed TrendFusion, a model for predicting the lo-
calized trends diffusion in social networks. Our goal was
to develop a model that will allow us to predict whether
a trend will be appearing on some location in the future,
and if it will appear, when it would appear. We showed
that the diffusion models designed for modeling information
spread between users are not suitable for modeling trends
diffusion across locations, where no real friendship relations
exist. The main aspect of TrendFusion is a new information
cascade model, Snowball Cascade (SC) model. The model
assumes that an activated node in a graph will always be
contagious.

We applied our proposed models on trending topics ob-
tained from Twitter for 48 of biggest US cities. We demon-
strated the effectiveness of our model and compared it to the
General Threshold (GT) model, a widely accepted diffusion
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model. TrendFusion outperformed GT model by achieving

the

recall and precision of prediction of trends by 98% and

80%, respectively.

TrendFusion is also capable of predicting the time at
which the trend will appear. TrendFusion successfully pre-
dicted trends before they actually become trending by up to
24 hours. The root mean squared error (RMSE) in Trend-
Fusion time prediction is less than six hours.
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