

 PRIORITIZED BLACK BOX TESTING USING GENETIC

SOFTWARE ENGINEERING METHODS

Riham Hassan‡1, Hicham G. Elmongui‡ §2, Yasmine Ibrahi m 3∗

‡Computer Science, Virginia Tech, Blacksburg, VA, USA
 § Computer and Systems Engineering, Alexandria University, Alexandria, Egypt

 ∗Arab Academy for Science and Technology, Cairo, Egypt

 1 rha b del@vt.edu , 2 elmongui@alexu.edu.eg , 3ysalem@cairo.aast.edu

ABSTRACT
Software regression testing is a critical and intensive
phase in the software development life- cycle. In this
paper, we propose, RECAP a testing technique that
derives regression test cases systematically from semi-
formal requirements. RECAP provides means to ensure
test coverage of requirements. Moreover, it prioritizes
the test cases according to the requirements priorities
in order to maximize the customer satisfaction and
minimize the cost of regression testing without reducing
the quality of test. RECAP also provides sufficient
information to trace each test case to its requirements,
which reduces the error-proneness of the test cases while
enhancing the testing coverage. We demonstrate the
effectiveness of RECAP using a case study and an
experimental study. The results show better test case
coverage of requirements and fault detection for
requirements with high priority compared to classical
testing techniques.

KEY WORDS
Test Case Derivation, Test Case Prioritization, Genetic
Software Engineering, Black Box Testing

1. Introduction

With software prevailing different aspects of our
life, the need for stronger verification techniques
assuring the software quality ascends to a top priority
in the software engineering life- cycle. Performing
extensive testing on a product raises the confidence in
the software quality; nevertheless impacts the schedule
and budget of the software.
Developing effective test scenarios is a key factor for
producing a system that satisfies the user requirements.
However, developing test cases with complete and
consistent coverage of the system requirements has
always been a challenge [14]. A better approach to
raise the quality of the test cases is to derive
(instead of develop) them against software
requirements.

Specifically, test cases might be automatically generated
from a requirements model or a design model [14]. This
approach would enhance the requirements coverage.

Further, the derived test cases would be testing the
represented requirements while minimizing the risk of
misinterpretation or missing requirements, as the
derivation process is not dependent on the tester skills
[10].
Deriving test cases from informal requirement
representation is the major source of incomplete and
inconsistent test coverage as informal requirement
representation could lead to missing or misinterpreted
requirements [1, 10, 16]. The solution is to systematically
derive the test cases from more rigorous requirements
models.
Test case prioritization has been suggested in the
literature as a solution to reduce the testing time and
promotes the software quality (e.g., [2, 6, 9, 18]).
Prioritizing test cases based on prioritized
requirements ensures customer satisfaction while
reducing the software testing time [15].
In this paper, we propose the Requirements-based tEst
Case generAtion and Prioritization algorithm (RECAP)
to systematically derive prioritized regression test cases
from a set of functional requirements modeled with the
Genetic Software Engineering (GSE) method [7].
RECAP addresses the system and regression
testing phases with the objective to raise the confidence
the coverage of the derived test cases to the customer
requirements. Modeling requirements with GSE
addresses various requirements problems including
requirements inconsistency, incompleteness, and the high
cost of change. In this paper, we propose the
Requirements-based tEst Case generAtion and
Prioritization algorithm (RECAP) to systematically
derive prioritized regression test cases from a set of
functional requirements modeled with the Genetic
Software Engineering (GSE) method [7]. RECAP
addresses the system and regression testing phases
with the objective to raise the confidence the coverage of

mailto:1rhabdel@vt.edu
mailto:3ysalem@cairo.aast.edu
mailto:elmongui@alexu.edu.eg

the derived test cases to the customer requirements.
Modeling requirements with GSE addresses various
requirements problems including requirements
inconsistency, incompleteness, and the high cost of
change. RECAP derives effective regression test cases
through providing test cases that promises reasonable
requirements coverage, as they are derived from
requirements represented by a semi-formal model. Due
to test case prioritization in cooperated in RECAP, it
helps reducing the testing time and cost by decreasing the
numbers of tests to be made. It provides sufficient
traceability information to trace each test case to its
requirements, which enhances the requirements
coverage. Further, it promotes customer satisfaction as
it propagates requirements priorities (specified by the
different stakeholders) to regression tests.
The rest of the paper is organized as follows. Section 2
reviews the current state of the art in test case generation
and prioritization. Section 3 gives an overview on the
Genetic Software Engineering (GSE) approach, We
depict and demonstrate the RECAP technique using a
case study in Section 4. Section, validates the RECAP
technique through an experimental study. Finally, Section
6 concludes the paper.

2. Related Work

Test case derivation and prioritization techniques have
been proposed in the literature and can be classified to
three categories. The first category includes techniques
that only derive test cases like [4, 5, 8, 10, 16, 17]. The
second category includes techniques that only prioritize
test cases like [12, 15]. The third category that we focus
on in this section both derives and prioritizes test cases.
The proposed RECAP technique falls in this category of
solutions.
In the three categories, the generation of test cases is
typically based on UML, classification trees or genetic
algorithm, whereas, prioritization techniques rely on the
weight given to the requirements represented in semi-
formal methods based on certain criteria.
Marini proposed a generation and prioritization technique
for COTS (Commercial, off- the-shelf) components in
which components are monitored for their interactions
followed by an automatic synthesis of the behavior
model using BCT technology (Behaviour, Capture and
Test) [6]. Rajappa generates and prioritizes test cases
based on a genetic algorithm combined with graph
theory. However, the high complexity and time
consumption of the technique makes it more suitable for
high integrity systems [11]. The Cow-Suite tool
introduced in [2] derives and prioritizes test cases based
on UML models. The UML models are analyzed to
explicitly define associations and relations among the
developed use cases and the involved actors to form a
graph representing the design models. The work proposed
in [18] derives and prioritizes test cases using enhanced
classification trees to guide the tester towards the

determination of test cases. Sapna et al. generate and
prioritize test cases based on control and data flow from
UML state diagrams [12]. The inconsistence and
misinterpretation of requirements may be detected better
due to different people building models for development
and testing. The disadvantage in this case is the effort
involved in developing two different models
RECAP falls in the third category as it derives and
prioritizes test cases. Similar to several mentioned test
case derivation techniques RECAP derive test cases from
requirements represented in a semi-formal model. In
addition, RECAP provides traceable information between
each test case and its requirements. Furthermore, RECAP
prioritization; likewise other prioritization techniques
address the early detection of faults. However, RECAP is
concerned with achieving customer satisfaction through
propagating requirements priorities (specified by
customer needs) to regression tests.

3. Genetic Software Engineering (GSE)

In this section, we briefly illustrate the Genetic Software
Engineering (GSE) method. We employ GSE in
RECAP to represent the requirements model from
which the regression test cases are derived. GSE
addresses the challenge of developing software systems
that meet their functional requirements and constraints
[7]. GSE adopts the genetic engineering principles in
building the system out of its requirements, whereas
conventional software engineering builds the system to
satisfy its requirements. A system built out of its
requirements enables satisfying the weaker goal of
conventional software engineering, which is, “will such a
design satisfy its requirements?” [7].
In GSE, each functional requirement, expressed in natural
language, is represented formally as a Requirement
Behaviour tree (RBT). GSE adopts the behavior tree
notation as a solution to a fundamental problem of going
from a set of functional requirements to a design that
satisfies those requirements since it provides a clear,
simple, constructive and systematic path for this
transition [7].
RBT is a formal, tree-like graphical form that represents
behavior of individual or networks of entities. Such
entities could realize or change states, make decisions,
cause/respond to events, and interact by exchanging
information and/or passing control.
An RBT provides a direct and clearly traceable
relationship between a requirement expressed in natural
language and its formal specification. Translation is
carried out on a sentence-by-sentence basis. For
example, in the Microwave Oven System (MOS) [7],
requirement 1 (R1) is expressed with the sentence
“when the door is closed, the button is enabled” is
translated to the behavior tree in Figure 1(a).
Requirement 2 (R2) is expressed with the sentence"
Closing the door turns off the light. This is the normal
idle state prior to cooking when the user has placed the

food in the oven”. R2 is translated to the RBT in Figure
1(b).
RBTs of individual functional requirements might be
composed, one at a time, to create an integrated Design
Behaviour Tree (DBT). GSE defines two axioms namely
the precondition axiom and the interaction axiom to

delineate the relationship between the individual RBTs
during the integration process. According to the
precondition axiom, every individual functional
requirement, expressed as a behaviour tree, has a
precondition. The requirement precondition has to be
satisfied in order for the behavior encapsulated in the
functional requirement to be applicable. According to
the interaction axiom, the precondition of every
requirement has to be established by at least one other

By using the precondition and interaction axioms, GSE
has the ability to detect missing or inconsistent
requirements during the integration of individual RBTs.
The root node of each RBT is checked to occur in another
RBT. If it does not, it is one of four possibilities: 1) it is
the root node of the whole system, 2) it is missing a
precondition, 3) the set of requirements is incomplete, or
4) there is a behaviour missing from or implied by the
requirement it needs to integrate with. Providing such
integration checks raises the confidence in the
completeness and consistency properties of the resulting
requirements model.

4. RECAP Overview

In this paper, we propose RECAP that derives prioritized
regression test cases systematically from a DBT
requirements model constructed with the GSE method.
Deriving test cases systematically from the DBT formal
requirements model strengthens the evidence of
requirements coverage by the resulting test cases. Further,
the systematic derivation of test cases from requirements
allows for a uniform distribution of test cases over
requirements. Every requirement is tested by one or more
test cases while every test case involves one or more
requirement.

The prioritization of the resulting test cases according to
the requirements priorities enables RECAP to increase
the rate of fault detection and, therefore, decrease
software testing time. Further, propagating requirements
priorities to the testing phase raises customers’
satisfaction as they could ensure that their needs are well
accommodated in the testing process.

The RECAP test case derivation algorithm provides
sufficient lineage information to trace each test case to its
requirements. Lineage information, which enables
software developers to trace defects to their
requirements, reduces the cost of locating the defect
origin significantly. Furthermore, it maps the change of
requirements to the test cases.

We have developed an automation framework for
RECAP to ensure testing coverage of requirements. The
quality of the regression test cases produced from
classic testing techniques rely heavily on the expertise
of the test case developer as the process is purely
manual. RECAP avoids such quality variation through
its automation framework. Further, automating the test
case derivation decreases software testing time and
eliminates human errors.

4.1 RECAP Workflow

Figure 1 RBTs Example

Figure 3 DBT Model of Microwave Oven

Figure 2: RBTs Integration

RECAP is primarily composed of three major steps to
derive prioritized regression test cases:1) locating a test
case in the DBT, 2) storing that test case in the test
suite and 3) prioritizing the identified test cases within
the suite.
We have demonstrated the effectiveness of RECAP on a
number of case studies. Our rationale for the selection of
those case studies is that they are of reasonable size, large
enough to be convincing and small enough to be
manageable. Further, these cases studies have been
examined before to demonstrate software engineering
approaches, which increases their credibility and
reliability. Due to space limitation, we show the multiple
RECAP steps on one case study, namely the MOS case
study [7].
Shlaer and Mellor introduced the MOS case study
that describes the operation of an automated
microwave oven system [13]. MOS has also been
employed to demonstrate the effectiveness of GSE [7].
Figure 3 represent the MOS DBT model as constructed
by Dromey in [7].

4.1.1 Locating a Test Case

RECAP derives a suite of regression test cases through
traversing the DBT model. The DBT model is composed
of a set of nodes that hold either a state or an event.
These nodes are rooted at the node representing the initial
state of the system. These nodes confine all the possible
system states and the events that trigger a system change
from one state to the other. Therefore, system behavior
could be extracted from the DBT model in the form of
scenarios. Each scenario is rooted at a sub-tree of the
DBT model detaining its precondition state, its different
steps in the form of events, and its post condition
state. The post condition state is the state the system will
move to upon the execution of the scenario. Such
scenarios would directly serve as regression test cases
derived directly from the requirements model.
Precondition node(s) are those that hold a state and
don’t follow an event node directly as they represent the
system state prior to a change due to some events.
Post condition node(s) are those that hold a state and
follow an event node directly as they represent the
system state that results from some events.
The algorithm traverses the DBT to locate the test
cases and add them to the test suite. The parsing
algorithm visits each node and checks for three
conditions, which are: 1) it is not the root node, 2) it
holds a state and 3) an event has been encountered,
which sets a variable isEncounteredEvent to true. The
algorithm starts at the root node of the tree and checks
the three conditions since it is a root node. The
algorithm then moves to the second node that is of
type event indicated by the “??Door-Closed??”, so the
isEncounteredEvent is set to true. The third node holds a
state “Door (Closed)”, and isEncounteredEvent is true, so

the algorithm keeps searching for a node that holds an
event to finalize the test case. The sixth node holds
the first encountered event “??Button- Push??”, so the
algorithm cuts the tree right before the sixth node, at
the fifth node that holds the state “Oven (Idle)”. The
fifth node becomes the post condition node of the current
test case. The next path to be parsed by the depth first
search algorithm is the one that node 1, Oven (Open), to
accommodate the other branch of node 4, Button
(Enabled). By doing so, the parsing algorithm exhausts all
the possible paths of the DBT.

4.1.2 Storing a Test Case in the Test Suite

The sub-tree representing the test case is composed of
three major elements namely the precondition, scenario
and post condition. After locating a test case, we add it to
the test suite in the form of a test case structure. This
structure contains the three elements confined in the test
case sub-tree. Additionally, the test case structure
contains an ID given to each test case and the
requirements numbers covered by this test case. The
requirements numbers are obtained from the nodes of the
test case sub-tree that store the requirements numbers in
their tags.
In MOS the first node of the sub-tree being a root node is
stored as the test case precondition. The content of the
following node is saved as the scenario as it holds an event
and the isEncounteredEvent flag is true. The third node
holds a state and the isEncounteredEvent is true, so the
content of the node is saved as the test case post condition.
The fourth and fifth nodes hold states, so they are
appended to the post condition. At this point, the test case
structure is filled with the content of the test case sub-tree.
In this test case, R6 is the requirement associated with
three nodes of the post condition. The requirement(s)
number(s) stored with each test case is used to prioritize
the test case and trace it back to the requirement(s) it tests.

4.1.3 Prioritizing the Test Suite

Once the parsing algorithm finishes identifying all the test
cases by visiting all the nodes in the DBT, the final step in
RECAP is to prioritize the test cases stored in the test
suite so far. RECAP prioritizes the test cases based on the
software requirements priorities, which are typically
specified by the stakeholders. Each requirement is given a
weight by each stakeholder based on its importance from
the stakeholder's perspective on a normalized scale from 0
to 1. The final priority value of each requirement is
calculated based on a weighted average function of all the
weights given by the different stakeholders. We adopted a
weighted average function to allow for giving different
weights to the perspective of some stakeholders. For
example, the customer perspective of the requirement
priorities could be higher than the project manager
perspective. We highly recommend involving multiple
stakeholders' viewpoints in the requirements prioritization

calculation process. Requirements with higher total
weights are given higher priorities. Propagating the
perspective priorities of multiple stakeholders to
regression testing increases its reliability. The weighted
requirement priority (WRP) function is

))(*())(*())(*(
1

iWDPiWPMPiWCPWRP
n

r

++=∑
=

The (WRP) for every requirement r till n, is the sum of the
weighted priority given by the customer (WCP), the
project manager (WPMP), and the developer (WDP). The
different perspective of the stakeholder is measured by i,

MOS requirements were not prioritized in the
literature, so we have calculated the priorities of MOS
requirements using weighted average from developer,
manager and customers to serve our RECAP
demonstration purposes . Further, we assume the
perspectives of the three stakeholders are weighted equal.
Therefore, the priority of any given requirement is the
average of the three stakeholders’ priorities. The
average weighted requirement priority AWRP is
calculated as follows, where z is the number of available
stakeholders.

In MOS case study test case 1 that we have shown
earlier is associated with R6 that has the priority of 0.8.
Therefore, test case 1 is assigned the priority value 0.8.
In case multiple requirements are associated with a single
test case, the highest requirement priority is assigned to
the test case priority. Assigning the highest priority to the
test case allows RECAP to promote testing of the higher
priority requirements prior to the lower priority
requirements

4.2 The RECAP Automation Framework

We developed the RECAP automation framework to
automate the test case derivation process from the DBT
model. The automation process contributes to the
reduction of the software testing time along with the
prioritization of test cases. Further, automating the
derivation process eliminates human errors. Figure 4
depicts the automation framework of RECAP.
We created an XSD schema for the DBT model and
another XSD for the resulting test cases. The XML of the
DBT is the input to the automation framework while the
XML of the test cases is the output.
The automation framework is composed of three phases.
The first phase parses the DBT model in a depth first
traversal and stores the nodes in an array structure. The
second phase locates the test cases and adds them to the
test suite. The test suite output is written to an XML
file. The third phase prioritizes the test suite based on
prioritized requirements. The test case prioritization

logic relies on the priorities of the requirements
associated with each test case.

5. Validation Experiments

Experimental approaches provide an attainable
opportunity to validate novel software engineering
approaches. However finding adequate systems for pilot
studies to evaluate software approaches like RECAP is
a complicated process. The candidate system should
provide its artifacts including programs, requirements
document, and fault data. Obtaining such material is a
nontrivial task [3]. Free software is accessible, but it
doesn’t provide requirements document or defects data.
Commercial software vendors, which are more likely to

establish requirements documents, are often reluctant to
release their requirements, source code, test suits, and
defects data to researches [3]. A reasonable and
manageable experimental validation could be obtained
through a study on a student context project that has
defects data and existing requirements [3]. The results of
such study should highlight the strength and potential
problems in RECAP. Moreover, using a student context
project for validation RECAP can enable a future
commercial study, because of the validated strength can
increase the credibility of RECAP.

We have utilized an existing system namely the Sprint
Tool System (STS), which includes the system
requirements, test cases and test results. STS has been
developed by undergraduate students over a full-semester
period. Such study has the advantage of reducing some
investigation cost due to availability of development
elements.

5.1 The Sprint Tool System (STS) Description

Figure 4 RECAP Automation Framework

STS is a student context project developed by 140
students. The project aims at developing a tool that
facilitates the agile development activities following the
SCRUM method. Scrum is a project management
framework for developing complex products and systems.
Scrum employs a lean iterative and incremental approach
with empirical process control [20]. The tool provides
means for developers to log the user stories in a product
backlog from which a SCRUM sprint is chosen.
Requirements could not be modified after documenting
them in a sprint backlog. When a change occurs in a
requirement, it is logged with the user stories and taken
into consideration for the next sprint. The tool assumes
each sprint lasts for 24 hours to 30 days. The tool also
supports task assignment, meeting and project artifacts
management.

5.2 Experiment Design

5.2.1 Hypothesis

We hypothesize that when prioritized regression test
cases are derived from prioritized requirements
represented in a semi-formal method, the derived test
cases would provide better requirements coverage and
higher rate of fault detection for the requirements with

higher priority than the test cases developed using the
requirement based classical test case generation technique.

5.2.2 Experimental
Variables

The independent variable is the approach being applied
for testing (RECAP and the requirements-based classic

test case design technique).The dependent variables are
the percentage of requirements coverage, the percentage
of fault detection, and the unit of fault severity detected
per unit of test-case cost.

5.2.3 Experiment Design

We developed a set of prioritized release test cases
manually from the sprint backlog as the students did not
develop release test cases for the tool. They only
performed unit testing and system integration testing.
The test cases were developed by a professional software
tester with 5 years of experience in testing a wide variety
of software systems in an international software house.
Further, the professional tester received two-day training
on the tool from the developers to become acquainted
enough with the tool features prior to developing the
manual test cases. We assigned priorities to the release
test cases we developed manually based on the priorities
given by the development team to each user story, as
shown in Table 1.
We also constructed a DBT model representing the STS
requirements from the given user stories. The DBT
model was constructed by a professional tester who
studied the GSE method. The DBT model and the
prioritized set of requirements were given as input to
RECAP to automatically produce prioritized release
test cases.
We tested STS by running the two sets of release test
cases, the one developed manually and the one derived
using RECAP.

5.2.4 Evaluation Metrics

We employ a number of evaluation metrics to assess the
effectiveness of RECAP against the classic technique as
follows:

• Requirements Coverage (RC): This metric assesses the
completeness of the test cases in covering the given
requirements. We measure RC by the median count of
test cases per requirement. The greater the median, the
stronger the evidence is for the requirements coverage.

• Average Percentage of Fault Detection (APFD):
This standard metric measures the average
cumulative percentage of faults detected over the
course of executing the test suite in a given order of
its test case. APFD has been used to quantify and
compare the rates of fault detection of test suites [19].
The higher the APFD, the better the rate of fault
detection is for the specified order of test cases.

• Average Percentage of Fault Detection - Cognizant
(APFDc): is a cost-cognizant test case prioritization
measure. That helps prioritizing and evaluating test case
orderings in a manner that considers the varying costs
that often occur in testing real-world software systems.
The higher APFDc, the better the rate of fault detection

 Table 1 STS Prioritized Requirements
Story Description Priori t

yR1 Guest can regist er on the system by
entering his data, an email is sent to the

user for verification

1

R2 Any registered user can request to create a
project, admin could accept or decline user
request. if accepted user is gra nted project

1

R3 Pro ject owner can create, edit and delete
task

0..8

R4 Pro ject owner can invite registered users
to a project, user can accept or decline the
invitation, if he accepts the user is
gra nted a pro ject me mber role by default,

0.8

R5 A project me mber, can request to be a
revie wer on a specific type of task, project
owner can accept or decline request

0.2

R6 Pro ject owner can create, edit and delete
spri nt in a project workspace.

0.8

R7 Pro ject owner can create, edit and delete
com pone nt in a project workspace

0.4

R8 Pro ject owner can create, edit and delete
meeting in a project workspace. spri nt.

0.6

R9 Pro ject owner can set whi ch tasks will b e
a s s i g n e d to whi ch spri nt. If the spri nt
is under imple me ntation task cannot be

0.8

R10 Pro ject owner/de veloper can assign a
specific task to a com pone nt

0.4

is for this order of test cases [19]. APFDc does not
assume that the test cases and fault costs are uniform as
does the APFD. We measure the cost of the test case
by the time taken by the software tester to execute
the test case on the system. We do not consider the
test case development time in our cost calculation as
regression test cases are developed once and run multiple
times with every system build. Therefore, the test case
development time is inconsiderable compared to the test
case running time. Srikanth has proved in [14] that the
severity of a fault is proportional to the test case priority
in which this fault has been detected.

5.3 Results Analysis and Discussion

The results of the experiments are summarized in Table
2. RECAP produced 33 test cases versus 27 test cases
developed manually using the classic technique. The
number of test cases produced in any testing approach
is not meaningful by itself as the uniform distribution
of the test cases over the requirements is a more
significant factor. The requirements traceability matrices
of both the classic technique and RECAP show a uniform
distribution of test cases over requirements.
Every requirement in both techniques has been tested by
more than one test case while each test case involved at
least one requirement. However, the number of test cases
and their distribution over requirements in the classic
technique rely heavily on the expertise of the test case
developer as the process is purely manual.
Figure 5 depicts the requirements percentile versus the
number of test cases per requirement using the
requirements traceability matrices. At 50 requirement
percentile, the median is 3 for RECAP and 2 for the
classic technique. It means that half of the requirements
were covered by at most 3 test cases in RECAP and 2
test cases in the classic technique.

The 100 requirement percentile shows that for all the
requirements in RECAP, each requirement is covered
by at most 7 test cases while it is 5 in the classic

technique. The percentile results show a better coverage
of requirements in RECAP over the classic technique.
Based on these results, we expect the requirements
coverage gap between RECAP and the classic
technique to widen with larger project sizes.

-
RECAP test cases detected 6 faults while the classic
technique test cases detected 4 faults as illustrated in
Figure 6. The figure shows the cumulative time taken to
execute the test cases when they are run in their priority
order from highest to lowest. RECAP was not only
capable of detecting more faults, but it detected such
faults earlier than the classic technique. Though the
number of test cases produced by RECAP is larger than
those produced by the classic technique, the RECAP test
suite is executed in less amount of time than the classic
technique. Our justification to this result is that RECAP
test cases are simpler requiring less amount of time to
execute than the manually developed test cases of the
classic technique. The higher APFD value of RECAP
(54.5%) indicates that RECAP is more effective in fault
detection compared to the classic technique (APFD =
33.3%). For APFDc, RECAP scores 17.2% whereas the
classic technique scores 16.4%. This is an indication that
RECAP detected more faults for requirements with
higher priority. Detecting more faults in requirements
with higher priority helps reducing the software testing
time and raises the software quality [19]. The
demonstration case studies and the validation results
enabled us to scrutinize some of the strengths and
limitations of RECAP.
 Our analysis depicts two major strengths of RECAP.
First, it reduces the testing time while maintaining a
higher software quality than the classic testing
techniques. The higher APFD and APFDc values of
RECAP over the classic technique provides an evidence
that RECAP is more capable of detecting faults in
general and for higher priority requirements in particular.
Detecting faults in higher priority requirements faster
reduces the testing time and provides stronger evidence
of the better software quality [19].

 Table 2 Summary of Experimental Results
RC APFD APFDc

RECAP 33 Test Cases 54.5% 17.2%

Classic 27 Test Cases 33.3% 16.4%

 Figure 5 Coverage

Figure 6 Test Cases and Fault Detection

We expect RECAP to be even more effective in detecting
faults than the classic technique for larger project sizes.
As a result of deriving test cases from a semi-formal
model rather than an informal requirements
representation. Further, the automation process allows
for reducing the testing time.
Second, RECAP increases the customers' satisfaction of
the product features. Detecting faults in requirements
with higher priorities allows the testing process to reveal
the more significant faults that concern the customer
first. Further, the better requirements coverage of
RECAP along with automating the production process
provides stronger evidences for customers to entrust the
product quality, which increases their satisfaction.
 Our analysis reveals two limitations of RECAP. First,
RECAP is sensitive to any incompleteness or
inconsistency in the GSE requirements model. Any such
incompleteness or inconsistency would propagate to the
test case derivation process in RECAP. However,
RECAP has achieved a step forward by enhancing the
requirement coverage compared to the classic technique
as RECAP guarantees coverage of the requirements
included in the GSE model. The depth first search
algorithm used in RECAP to derive the test cases from
the DBT model ensures coverage of all the DBT paths.
Second, RECAP derives the regression test cases from
GSE, which models functional requirements. Additional
test cases are required to accommodate testing non-
functional requirements such as the goal-oriented
techniques or the Non-Functional Requirements (NFR)
framework.

6. Conclusion

The proposed technique RECAP systematically derives
regression test cases from a genetic requirements model,
which ensures better regression testing completeness.
Consequently, RECAP raises the customer confidence
in the software verification process as it reduces its error-
proneness . The generated regression test cases are
prioritized according to the customer needs, which
enables the reduction of the test suite size without
reducing the quality of the tests. The proposed
RECAP approach auto- mates the generation of the test
case suite, and therefore, reduces human errors as
well as the cost and effort of the regression test suite
generation process. The regression test suite is derived
using a systematic procedure, which allows for the flow
of sufficient traceability information that relates test
cases to requirements. Traceability information enables
the construction of more structured traceability testing
matrices. The RECAP approach is validated using
credible case studies and an experimental software
project. Our results illustrate the effectiveness of
RECAP in providing more complete test coverage than
the classic developing methods. Further, the results
show that faults related to high priority requirements are
detected more reliably than the classic testing techniques

References

[1] Sommerville Ian, Software Engineering (England, Addison
Wesley, seventh edition 2004).
[2] F. Basanieri, A. Bertolino and E. Marchetti. The Cow Suite
Approach to Planning and Deriving Test Suites in UML
Projects. Springer-Verlag Berlin Heidelberg 2002

[3] S.G. Elbaum, A.G. Malishevsky, and G. Rothermel. Test Case
Prioritization: A Family of Empirical Studies. IEEE Trans.
Softw. Eng., 28(2), 2002.
[4] S. Gnesi, D. Latella, and M. Massink. Formal Test Case
Generation for UML State charts. In ICECCS, 2004.
[5] A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, and A. Skou.
Time-Optimal Real-Time TestCase Generation Using Uppaal. In
FATES, 2003.
 [6] L. Mariani, S. Papagiannakis, and M. Pezz`e. Compatibility
and Regression Testing of COTS-Component-Based Software. In
ICSE, 2007.
[7] T. Myers and R.G. Dromey. From Requirements to
Embedded Software - Formalizing the Key Steps. In ASWEC,
2009.
[8] M. Prasanna and K.R. Chandran. Automatic Test Case
Generation for UML Object diagrams using Genetic Algorithm.
IJSCA, 1(1), 2009.
[9] B. Qu, C. Nie, B. Xu, and X. Zhang. Test Case Prioritization for
Black Box Testing. In COMPSAC, 2007.

[10] V. Rajappa, A. Biradar, and S.Panda. Efficient Software Test
Case Generation Using Genetic Algorithm Based Graph Theory.
In ICETET, 2008

[11] S. Rayadurgam and M.P.E. Heimdahl. Coverage Based
Test-Case Generation Using Model Checkers. In ECBS, 2001..
[12] P.G. Sapna and H. Mohanty. Prioritiza tion of Scenarios
Based on UML Activi ty Diagrams. In CICSYN, 2009.
[13] S. Shlaer and S.J. Mellor. Object Life cycles Modeling the
World in States. Yourdon Press .
[14] H. Srikanth, L. Williams, and J. Osborne. System test
case prioritization of new and regression test cases. In ISESE,
2005
[15] P.R. Srivastava, K. Kumar, and G. Raghurama. Test Case
Prioritization Based on Requireme nts and Risk Factors. ACM
SIGSOFT SEN, 33(4), 2008.
[16] L.H. Tahat, A. Bader, B. Vaysburg, and B. Korel.
Requirement-Based Automated Black-Box Test Generation. In
COMP- SAC, 2001.
[17] J. Tretmans and A. Belinfante. Automatic Testing with
Formal Methods. Technical Report TR-CTIT-99-17,
University of Twentie t h Centre for Telematics and Information
Technology, December 99
[18] Y.Y. Yu, S.P. Ng, and E.Y.K. Chan. Generating, Selecting
and Prioritizing Test Cases from Specifications with Tool
Support. In QSIC, 2003.
[19] Malishevsky G. Alex, Ruthruff R. Joseph, Rothermel Gregg
and Elbaum Sebastian, Cost-cognizant Test Case Prioritization.
Technical Report, University of Nebraska 2006 VOL. 17, NO. 5,
MAY 1991
[20] Rising, L.; Janoff, N.S.; AG The SCRUM
SoftwareDevelopment for Small Teams. IEEE 2000

