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ABSTRACT
Location-detection devices are used ubiquitously in moving
objects due to the everyday decreasing cost and simplified
technology. Usually, these devices will send the moving ob-
jects’ location information to a spatio-temporal data stream
management system that will be then responsible for an-
swering spatio-temporal queries related to these moving ob-
jects. Most of the existing work focused on the continu-
ous spatio-temporal query execution. However, several out-
standing challenges have been either addressed partially or
not at all in the existing literature. In this paper, we fo-
cus on the optimization of multi-predicate spatio-temporal
queries on moving objects. In particular, we provide a cost-
ing mechanism for continuous spatio-temporal queries. We
provide for the optimization of the parameters of the spatio-
temporal operators. Finally, we propose the adaptive exe-
cution of the continuous queries for spatio-temporal data
stream management systems.

1. INTRODUCTION
In recent years, the technology of location-detection devices
became substantially cheaper to the point that this technol-
ogy is being ubiquitously incorporated in moving objects.
Not only we may find Global Positioning Systems (GPSs)
in cars, ships, and airplanes, but also some mobile tele-
phones and PDAs are already equipped with location de-
tection devices. This has stimulated a large spectrum of
research devoted for the spatio-temporal query processing
and optimization and for providing location-aware services.

Usually, location-detection devices will send the moving ob-
jects’ location information to a spatio-temporal data stream
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management system that will be responsible for answer-
ing spatio-temporal queries related to these moving objects.
Mobile phones already send similar information to the cel-
lular networks. Anyone who is carrying a cell phone is re-
porting its location to the network to receive phone calls
wherever she goes.

Spatio-temporal data stream management systems (ST-
DSMSs for short) have been prototyped (e.g., PLACE [8]
and CAPE [14]) to make use of the massive number of mov-
ing objects being aware of their location. Location-aware
services can be provided by these systems. Consequently,
people can avoid traffic jams, parents can ensure their kids
are safe, an enhanced 911 service [1] can be provided, and
travelers can know easily about nearby facilities when they
are driving.

ST-DSMSs receive their input as a stream of location up-
dates from the moving objects. Streams are characterized
by their high input rate. They cannot be stored and they
have to be processed on the fly.

There are two types of queries that can be issued to ST-
DSMSs. The first type is snapshot queries, which are eval-
uated only once. The query answer for this type depends
on the spatio-temporal data reported to the ST-DSMS un-
til the evaluation begins. The second type is continuous
queries, which are registered with the ST-DSMS. Continu-
ous queries are answered with the available location updates,
and are updated whenever their answer changes with the ar-
rival of new location updates from the moving objects.

Previous work on spatio-temporal queries on moving ob-
jects has focused on single predicate queries, for example,
range queries and k-nearest-neighbor (kNN) queries. How-
ever, there are many interesting queries that consist of mul-
tiple predicates. None of the previous approaches consider
multi-predicate queries (e.g.,[2, 3, 5, 6, 7, 8, 10, 9, 11, 12, 13,
15, 16, 18, 17]. Below, are a few examples of such queries.

Example 1: Joe is driving on a highway and needs to
locate the closest motels in order to spend the night. How-
ever, he is only interested in those ahead of him. Joe would
issue a continuous query to locate the nearest motels (a kNN
predicate) that are ahead of him (a range predicate).



Example 2: It is required to identify trucks passing within
a certain area. According to the selectivity of the range pred-
icate and that of the selection (type=“truck”), two different
query evaluation plans may be optimal.

Example 3: The police department needs to investigate
whether, at any time, there exists a region in which the
number of suspects exceeds the number of police officers. In
this case, the query would retrieve the suspects and police
officers in each region (two range predicates), group by re-
gion to get the count of both groups, then perform a theta
join to retrieve the required regions. Notice that both police
officers and suspects are moving objects.

As we have shown in the previous examples, multi-predicate
spatio-temporal queries may arise in several situations. This
leads to a number of questions. How can we come up with
a query evaluation plan for such queries? How can we de-
termine whether a plan is optimal? And whether there are
alternative plans that incur less system overhead?

We summarize our contribution as follows:

• Identifying the challenges related to the lack of spatio-
temporal pipelined operators, and the impact of time,
space, and their combination on the query plan opti-
mality under different circumstances of query and ob-
ject distributions.

• Proposing a cost estimation model for continuous
spatio-temporal queries. We define the cost of different
spatio-temporal query operators, and then we leverage
the cost estimate from snapshot to continuous queries.

• Estimating selectivities of spatio-temporal queries. We
consider not only free motion spatio-temporal his-
tograms, but also road-network spatio-temporal his-
tograms. We also consider using representative snap-
shots of the histograms in order to benefit from the
periodicity property intrinsic in spatio-temporal data.

• optimizing the parameters of the spatio-temporal
query operators. This is not limited to the existing
spatio-temporal operators. We go further to define
new operators and to optimize their performance as
well.

• Proposing the adaptive execution of continuous spatio-
temporal queries. We find it natural to benefit from
adapting the query execution plan with the endless
change in the selectivity of the query operators.

2. MOTIVATION
In this section, we present the challenges that confront the
efficient execution of continuous spatio-temporal queries.
First, there is no notion of pipelined spatio-temporal opera-
tors in the literature. Second, since the data is the location
updates of moving objects, these updates form a stream of
data that changes in properties (e.g., selectivities) over the
time. Third, spatio-temporal servers usually serve a spatial
area (e.g., a city). The properties of parts of this region gov-
erns how the objects are moving (e.g., their speed) and how
their density is spread all over the cities. For instance, den-
sity of moving objects at downtown is usually higher than

SELECT M.ID, M.Location

FROM MovingObjects M

WHERE M.Type = "18 Wheeler"

INSIDE Area A

Table 1: Query Q

in a suburb. Forth, the combination of the spatial challenge
and the temporal challenge forms a complex challenge as the
selectivity of the operators change over both space and time
and therefore no single query evaluation plan can withstand
such change for a long period of time.

2.1 Spatio-temporal pipelined operators
We need to compose a pipeline of query operators to answer
multi-predicate spatio-temporal queries. In the literature,
there are many algorithms to answer spatio-temporal queries
on moving objects. They all answer single-predicate queries
— and none of them is pipelined.

The input to the existing operators is a stream of the lo-
cation updates of the moving objects. The output of these
operators are the moving objects satisfying the query. The
query answer can be reported periodically (or upon change)
as the identifiers of all the objects forming the answer set.
Alternatively, the answer set is reported progressively as a
sequence of positive and negative updates [9]. A positive
update indicates a new object being added to the answer
set, and a negative update indicates an object that is being
removed from the answer set.

Since the input of the current operators is different in format
and semantic from their output, we cannot just plug the
existing operators on top of each other to form a pipeline in
order to answer a multi predicate spatio-temporal query.

2.2 Optimal Plan Varies with Time
Basically, the distribution of the moving objects changes
continuously. For instance, downtown is full of vehicles dur-
ing business hours leaving the suburbs with fewer cars. At
night, most of the cars park, and hence deregister from the
ST-DSMS. Consequently, the number of the cars in the ST-
DSMS is less.

Consider the query Q in Table 1 that returns the ID and
location of any 18 wheeler whose location is inside an area
A. The INSIDE query operator is proposed in [9] to check
whether or not a moving object is in a certain range. Ini-
tially, at Time t1, the query optimizer finds that the selec-
tivity of the INSIDE operator is less than the selectivity of
the WHERE clause (Figure 1(a)). Thus, the query opti-
mizer picks up the query execution plan in Figure 1(b) to
be used to answer the query (Plan A). At Time t2, many
vehicles enter the area A and this increases the selectivity of
the INSIDE operator, and meanwhile the number of trucks
decreases (Figure 1(c)). Consequently, the WHERE clause
is more selective than the INSIDE predicate. In this case,
Plan A is suboptimal and the optimal query evaluation plan
becomes Plan B (see Figure 1(d)).

2.3 Optimal Plan Varies with Location
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Figure 1: Moving vehicles (18W = 18 Wheeler, O = other) on the spatial space and the corresponding query
execution plan.

Even at the same time instant, the mapping of a continu-
ous spatio-temporal query into an efficient query evaluation
plan is not one-to-one. Such challenge is illustrated with
the following example. Consider the same range query in
Table 1, but with two different areas A as shown in Fig-
ures 2(a) and 2(c).

Choosing an optimal execution plan is affected greatly by
the distribution of the moving objects. In Figure 2(a), the
INSIDE predicate is more selective than the predicate in the
WHERE clause and hence the INSIDE operator comes first
in the plan; Plan A (Figure 2(b)). On the other hand, for
the same data distribution, and at the same time instant,
but for a different INSIDE predicate (Figure 2(c)), Plan B
(Figure 2(d)) is the optimal query evaluation plan.

2.4 Both Time and Location Change Contin-
uously

The query optimization problem becomes more complex
when a ST-DSMS receives moving queries on the moving
objects. The selectivity of the query evaluation plan not
only depends on the distribution of the moving objects on
the space, but also on the location and speed of the moving-
query focal object. When a query has more than a focal
object, where all of them are moving, the query evaluation
plan of the continuous query becomes suboptimal faster.

3. COST OF CONTINUOUS SPATIO-
TEMPORAL QUERY

In this section, we propose a cost estimation model for con-
tinuous spatio-temporal queries. First, we define what the
cost of a continuous spatio-temporal is. Next, we provide for
the selectivity estimation that is essential to this cost model.

3.1 Cost Model for Continuous Spatio-
temporal Queries

The location updates of the moving objects are streamed to
the server. Location updates are batched each time period
T , and are sent to the query executor. Therefore, the execu-
tor receives batches of location updates at times t0, t1, . . .
such that for any k > 0, tk − tk−1 = T . The amortized
cost of a continuous spatio-temporal query is defined as the
cost of updating the query answer for the location updates
during any of these periods divided by the number of these
location updates.

This amortized cost is a function of the operators in the
query pipeline and the location updates of the moving ob-
jects. We are adopting the positive and negative update
paradigm. Therefore, for each operator, we estimate the
number of positive and negative updates coming out of each
operator as a result of the location updates in any time pe-
riod.

3.2 Spatio-temporal Selectivity Estimation
ST-Histograms are devised to estimate the selectivity of
spatio-temporal operators [4]. They are continuously main-
tained to provide good estimates for the selectivity estima-
tion of continuous pipelined query operators. Unlike tradi-
tional histograms that sample and/or examine all incoming
data tuples, ST-Histograms are built and maintained using
feedback from the query executor.

Periodically, the actual selectivity of the existing continuous
queries is being sent from the query executor to the ST-
Histogram manager. The query executor already knows the
selectivity of each operator as part of its execution. Hence,
ST-Histograms are maintained with almost no overhead to
the system.

Rather than wasting system resources in maintaining accu-
rate histograms for the whole spatial space, we only maintain
accurate histograms for that part of the space that is rele-
vant to the current existing queries. The rest of the space
has less accurate histograms.

3.2.1 ST-Histograms for Free-motion Objects
ST-Histogram is a grid-based histogram, in which the spatial
space is divided into a grid. Each grid cell is associated
with its selectivity. The selectivity of a query is a weighted
sum of the selectivities of the parts of the grid cells that
intersect the query range. The actual selectivity reported
by the query executor is disseminated using similar weights.
These weights are computed by taking into account that
moving objects may move freely in the space. For instance,
if a query covers a quarter of a grid cell, using a uniformity
assumption, the selectivity of the query will be the quarter
of the selectivity of this grid cell.

3.2.2 Road Network ST-Histograms
Many applications assume that the moving objects are con-
strained by a road network. Therefore, the uniformity as-
sumption that the moving object may exist in any place in
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Figure 2: Moving vehicles (18W = 18 Wheeler, O = other) on the spatial space and the corresponding query
execution plan.

the grid cell cannot hold. In this case, we use a similar uni-
formity assumption, in which the fraction of lengthes of the
network segments covered by the query is being used.

3.2.3 Representative ST-Histogram Snapshots
We analyze spatio-temporal data and realize certain pat-
terns in the histogram. Mainly, periodicity patterns are de-
tected in spatio-temporal data. This periodicity is a result
of many periodic habits of the moving objects. For instance,
people go to work and return home every day at the same
time. This is materialized as rush hours, which occur daily
at the same time. Moreover, people tend to take the same
route to work each time they make this trip. Similarly, other
patterns occur periodically on different periods, e.g., people
traveling on weekends.

Instead of maintaining ST-histograms online, we can switch
to the periodicity mode. In such mode, an ST-Histogram
is run online for a certain time to learn the time instants
when we can take representative snapshots from it. Later
on, the ST-Histogram is exchanged by these representative
snapshots, which will be used in their corresponding time
interval. For instance, we may have a snapshot for the rush
hour in the morning and another one for the rush hour in
the evening. A snapshot may be taken for late night and so
on.

3.3 From Snapshot to Continuous Query Cost
When a continuous spatio-temporal query is being submit-
ted to the server, we need to estimate its cost to see whether
or not we can afford executing it and hence admit it. This
cost needs future estimates from ST-Histogram. Since ST-
Histogram provides current estimates only, we provide for
a mechanism to estimate future selectivities from current
ones.

In this model, we compute the probabilities that an object,
located inside the query range, will exit the range. This
will materialize as a negative update out of the query op-
erator. Similar probabilities are computed for positive up-
dates. These probabilities are computed numerically and
are looked up in a table whenever we need to compute the
cost of the continuous spatio-temporal query.

4. SPATIO-TEMPORAL OPERATOR OP-
TIMIZATION

We find the optimization of the parameters of each query op-
erator an integral part of the query optimization of continu-
ous spatio-temporal queries. In the next subsection, we start
with optimizing existing spatio-temporal operators such as
kNN operators. Next, we introduce a new query operator
called CANN to answer the continuous aggregate nearest
neighbor query and provide mechanisms for optimizing its
parameters in Section 4.2.

4.1 Optimizing kNN Query Operators
A kNN query operator continuously retrieves the k objects
that are nearest to a query pivot. We provide optimiza-
tions for the parameters of this operator, whose execution is
described in [7].

The configuration of this operator involves defining the ra-
dius of the search space that needs to be input to the opera-
tor. Also, to avoid the uncertainty in the query answer when
objects outside the range move outside the search space,
a safety region is proposed to be included in the search
space [7].

The radius of the search space is dynamically computed with
the arrival of location updates. If an update arrives late,
this could affect the performance of the operator. Instead,
we propose computing this radius based on the probability
of having a moving object around the query pivot. This can
be deduced from the selectivity estimates provided by ST-
Histogram. Similar reasoning applies to compute the safety
region.

Also, in the case where a kNN operator appears on top of
an INSIDE operator in a query pipeline, the radius of the
kNN operator search space needs to be adjusted since the
global nearest neighbor may not be part of this constrained
nearest neighbor query. We provide mechanisms to compute
the radius of the operator in this case.

4.2 Optimizing CANN Query Operators
In this section, we summarize a new operator we devised
to answer a new type of spatio-temporal queries, namely
continuous aggregate nearest neighbor (CANN) queries. A
CANN query specifies a set of landmarks, an integer k, and
an aggregate distance function f (e.g., min, max, or sum),
where f computes the aggregate distance between a moving
object and each of the landmarks. The answer to this con-
tinuous query is the set of k moving objects that have the
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Figure 3: Examples of Aggregate Nearest Neighbor
Queries

smallest aggregate distance f .

As an example, consider Figure 3. This figure gives a snap-
shot of a scenario in which {m1, m2, . . . , m15} are a set of
moving objects and {L1, L2, L3} are three landmarks. When
the aggregate function is sum, the sum-ANN query retrieves
the moving object whose sum of distances to the three land-
marks is minimal. Object m14 represents such object in
Figure 3(a). The max-ANN query (associated with the max
aggregate function) retrieves the moving object whose max-
imum distance to any of the landmarks is minimal. In this
case (see Figure 3(b)) the result is object m9. Object m6

is the result of min-ANN in Figure 3(c) and its minimum
distance to any landmark is minimal.

We analyze the properties of the three aforementioned ag-
gregate functions and prove that the locus of the points of
equal aggregate distance to a set of foci is convex in the case
of sum and max and is not in the case of min. Aggregate
functions with a convex loci are called class A aggregate
functions, whereas class B aggregate functions do not have
a convex loci. We provide an incremental algorithm that
would work for both aggregate functions classes. We also
provide a progressive algorithm that provides a significant
improvement in performance in the case of class A aggregate
functions.

The Progressive Aggregate Nearest Neighbor algorithm
(PANN, for short) retrieves the continuous query answer
incrementally. PANN does not recompute the answer each
period. Instead, it produces the differences from the current
answer and the previous one. PANN is progressive in a way
that the search space (i.e., the moving objects) gets pruned
after checking each individual focus (landmark) in a certain
order.

The foci order determines how many moving objects get
pruned after being tested against each focus, and therefore,
directly affects the performance of the algorithm. Com-
puting the optimal foci order requires an exhaustive search
among all possible foci permutation. We propose three poli-
cies for computing foci orderings. We also perform experi-
ments to show which of these policies should be used with
which class A aggregate function, and how far this selection
will perform from the optimal order.

5. ADAPTIVE EXECUTION OF A CON-
TINUOUS ST QUERY

As pointed out in Section 2, no query execution plan can
remain optimal for an extended period of time. Therefore,
we envision the adaptive execution of a continuous spatio-

temporal query as an essential component of any spatio-
temporal stream management system.

By monitoring the execution of the continuous query, we
can monitor when the current statistics become far away
from those statistics that are used to compute the query
evaluation plan. In this case, the continuous query needs to
be re-optimized.

To prevent a query plan from being executed on all location
updates arriving to the ST-DSMS, we use a spatio-temporal
data-to-plan grid. A location update is forwarded only to
queries whose answer may be affected by this location up-
date. This will materialize into having a sub-query for each
grid cell whose input may be part of the query answer. Lo-
cation updates in a certain grid cell are pushed into the
sub-queries that belong to this grid cell. Answers to the
sub-queries are merged or aggregated to form the answer to
the original query. Therefore, an arriving location update
may get dropped if it is located in a region in which no query
is interested.

When the cost of the plan changes due to the motion of the
query and/or the objects, the operators in the query evalua-
tion plan might get reshuffled, the plan may get decomposed
into sub-plans, or the sub-plans may reconsolidate again to
form one plan. This is illustrated in Fig. 4(a)–4(b), where
we have a continuous query Q consisting of a range pred-
icate and a kNN operator. Initially, Q is covered by one
data-to-plan grid cell, and according to the selectivity of
both operators we depict the query evaluation plan shown
in Fig. 4(a). Next, in Fig. 4(b), the range predicate moves
and covers two grid cells. Consequently, a sub-plan is cre-
ated for each grid cell, and the query answer will consist
of the results of both sub-plans merged together. Later on,
the query may move again and falls completely into another
grid cell, the two sub-plans may reconsolidate and form a
new query evaluation plan that takes into account the selec-
tivity of all operators.

6. CONCLUSION
In this paper, we presented query optimization of contin-
uous spatio-temporal queries. Different from most existing
work, we focus on the optimization of multi-predicate spatio-
temporal queries on moving objects. Specifically, we provide
a costing mechanism for continuous spatio-temporal queries.
We provide for the optimization of the parameters of the
spatio-temporal operators. Finally, we propose the adaptive
execution of the continuous queries for spatio-temporal data
stream management systems.
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