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This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally
variable data from multiple sources. The proposed technique uses trajectory information to determine the posi-
tions of time-enabled and spatially variable scatter data at any given time through a combination of along tra-
jectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data
of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA en-
ables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data

at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able
to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the
TTA can be applied to a wide range of multiple-source data.

1. Introduction

Computational Fluid Dynamics (CFD) techniques such as Large-Eddy
Simulation (LES) or Direct Numerical Simulations (DNS) can produce
very large, time-varying, multi-field data sets. Exploration and analysis
of these data sets are complicated processes due to their size, complexity
and time-varying nature. Therefore, instead of saving the simulations
into grid or finite element formats, numerical simulations of unsteady
flow fields are usually stored as a set of point features organized in
trajectories that pass through user-defined seed points (Lane, 1996; Max
and Becker, 1999; McKenna et al., 2002; Konopka et al., 2007; and
others). Particle tracing has been a central topic in flow visualization.
The bulk of the work, however, has relied on a velocity field repre-
sentation of the flow and has used numerical integration methods for
the tracing process (Post et al., 2003; McLoughlin et al., 2010; and
others). Since these integration-based techniques are computationally
expensive and time consuming, techniques have been developed to
efficiently sample the space and to use GPU parallelism to speed up the
process (Schafhitzel et al., 2007; Burger et al., 2009). Kruger et al.
(2005) advected particles on the GPU to allow for interactive visuali-
zation of steady flow on uniform grids to visualize streamlines and
stream ribbons.

* Corresponding author. Tel.: +2 01000 373088.

On the other hand, scatter observations of constituents transported in
the flow field are usually made through direct measurements or remote
sensing instruments. Examples of these constituents are suspended sub-
stances, pollutants, and water vapor in the atmosphere. It is always
required to fuse the measurements from multiple sources to form a time
continuum which becomes problematic when the measurements are not
taken at the same times and locations. Such data fusion is important in
developing meaningful visualizations, and can serve several purposes
including spatiotemporal correction of orbital data and the resampling of
data into structured formats (Kohrs et al., 2013), domain filling of
missing data and plume tracking (Fairlie et al., 2014), and sensors cross
correlations (Wu et al., 2017).

In cases where scatter observations from all involved sensors are
referenced in the same time scale (i.e., regular in time) and completely
cover the area of interest at every time step, the spatiotemporal problem
is easier since it is reduced to spatial-only interpolation at every time step
(Philip and Watson, 1982; Franke, 1982; Montmollin et al., 1980; Isaaks
and Srivastava, 1989; and others). However, this is not the case in most of
the large scale spatiotemporal interpolation domains, where multiple
sensor types are involved. The problem of spatiotemporal data analysis
and visualization then becomes much more complicated due to the fact
that data is obtained from multiple sensor types, each with a different
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time scale. Further, sensor coverage is limited in both space and time.
Data from polar orbiting satellites constitutes a clear example of such
sensors since it has limited spatial coverage (strips) where the same re-
gion on Earth is visited once or twice a day depending on the satellite
orbital speed. In such cases, spatiotemporal interpolation is needed to
construct an instantaneous (i.e., at the same time) full scan of the whole
Earth. The spatiotemporal problem becomes more complex when more
than one satellite is involved. This paper develops an interpolation
technique that makes use of trajectory information to perform the
spatiotemporal interpolation in an attempt to provide a practical solution
to fill this gap.

2. Problem statement

The TTA (Trajectory-based Tracking Analyst) proposes a novel
spatiotemporal interpolation technique, called Trajectory-based Spatial
and Temporal Interpolation (TSTI). The TSTI was first used by Elshehaly
et al. (2014, 2015) for visualization purposes. The detailed description
and application of the TSTI method is presented here in the current study.
The method aims to interpolate motion field information at any given
location not given in the original trajectories. The interpolated trajec-
tories can then be used to move (“slide”) the points of interest (whether
they are remotely sensed detections or injected plume seeds in the flow
field) to the corresponding positions at the desired target times. Unlike
other established techniques (Vernier et al., 2013; Fairlie et al., 2014; and
others), the analysis environment in the TTA is not the circulation model
itself but the seeding is made completely outside the model (it only uses a
trajectory data set obtained from the model without seeding the de-
tections inside the model itself). This has the advantages of: (i) simplicity:
the method works independently outside the model; (ii) efficiency: it
runs quickly and can seed big data sets; (iii) flexibility: it requires only
trajectory data whether from simulations or from RK4 integration of
velocity vectors obtained from image cross correlation and pattern
matching techniques; (iv) precision: the ability to seed high resolution
scatter data, e.g., narrow plumes; and (v) practicality: the ability to seed
and link different types of scatter data, i.e., different sensors, into the
flow field which facilitates data joining operations.

3. Methodology

The developed TSTI technique has two components: (a) along tra-
jectory adjustment (ADJUSTT) and (b) spatiotemporal interpolation
(SPATIOT). The idea is to use motion information (i.e., the spatial
translations) from the nearest m trajectories (m = 4-8) and spatially
interpolate the translation information to the un-gauged location under
consideration based on its relative location to the trajectories. A detailed
description of the technique follows.

3.1. ADJUSTT

Data obtained from large unsteady state simulations is usually stored
in the form of trajectories, or pathlines, each consisting of a stream of
time-enabled points organized in a sequence of polylines. The attributes
of the trajectory points include information about their position in 3D, a
timestamp, and possibly a set of scalar values that are associated with
each point from simulation results (e.g. temperature, pressure, etc.). Each
polyline (i.e., trajectory) can be looked at as the locus of motion of a
particle at the different times on a time scale. The time step along the
trajectories AT is usually constant (or fractions of the constant). The
objective of ADJUSTT is to determine the position along the same tra-
jectory at any time instant within the time step. This is achieved through
relative second degree polynomial fitting. To elaborate, consider a tra-
jectory where point (X7, Y 11, Z 11) denotes a position at time T1 on a
trajectory (Fig. 1), the position after dt < AT on the same trajectory (at
time T1+dt) can be obtained by adding the spatial displacement (trans-
lation) vector (Equation (1)):

Computers and Geosciences 111 (2018) 283-293

Adjusted position
attimet=T1 +dt

Trajectory point
attime T2

Trajectory point
attime T1

Fig. 1. ADJUSTT determines the position along trajectories at any required time t not
coinciding on the time step (AT = T2-T1) of the simulation data set (i.e., dt <AT). This
requires the pre-calculation of the coefficients of second degree polynomials (a;, az, by, bz,
1, ¢2). The second degree polynomials are used to predict the position along the trajectory
in between the simulation time step. Note that the coefficients are pre-calculated at all
simulation vertices using least squares and added as new attributes to simulation data sets.
Three positions (the current position and the subsequent two positions) are used in the
least squares to pre-determine the coefficients at all the points of the simulation.

X X dx
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where (dx, dy, dz) is the spatial displacement vector (obtained from
Equation (2)) and aj, ay, by, by, c;, 2 are the coefficients of the second
degree polynomials. These coefficients can be calculated using the least
squares method, either on the fly during execution or during pre-
processing, and added as attributes to the original data set. In this
paper, we use the second option (pre-processing) to calculate the six
coefficients at every point along all trajectories (i.e., determine the sec-
ond degree polynomial that passes through every point and the next two
points on all trajectories by solving a simple least squares matrix form at
every trajectory point (Equation (3)):

3 Xt oxr 0 0 0
Z t Z r Z r X a bl C1
Yooy v a by o
Z dx Y dy >ldxz
= | Y owx Yy Yz 3

D fdx Y rdy Y rdz

Since the first point is always the origin (t = 0, dx = 0, dy = 0, dz = 0)
on the relative frame of reference, the least squares summations in
Equation (3) are done for the next two points only where the second and
third points are (t;, dx;, dy;, dz1) and (ty, dxz, dy2, dzz), respectively. Note
that the spatial shifts are taken from the first point (i.e., the origin) while
t; and t, are the differences in time with the first point and usually equal
AT and 2AT respectively (if the time step of the trajectory data set
is constant).

3.2. SPATIOT

SPATIOT determines the translation during a certain period of any
point of interest (e.g., sensor detection or a point not available in the
simulation) by interpolating the corresponding shifts of the nearest tra-
jectories points (in time and space) to the point of interest. The spatial
interpolation is based on the inverse distance weighted (IDW) principle
in which closer points are given much higher weights. In order to explain
the interpolation, consider a point of interest at source time Ts for which
we need to determine the corresponding position at destination time Td
(note that this point of interest is not included in any of the simulation
trajectories). On the other hand, the trajectory simulation dataset con-
tains np polylines and total number of vertices N on a regular time scale
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Fig. 2. SPATIOT finds the position of any detected point (not included in the simulation
data set, i.e., un-gauged location) at any target times (Ty). It uses the inverse distance
weighted spatial interpolation to determine the displacement of the detection from the
displacements of the nearest neighborhood points (the nearest in time and space). n is the
number of nearest neighborhood points from the simulation used in the interpolation
(recommended n = 4-8, 8 is used). Note that ADJUST (Fig. 1) is used here to find the exact
positions of the simulation points at both the time of the detection and the target time.

where T1 and T2 are the nearest times before Ts and Td respectively
(Fig. 2). The interpolation proceeds as follows:

e Select all points at time T1 from the simulation. Note that the number
of selected points is equal to or less than the number of polylines np in
the simulation data set. Then use ADJUSTT to slide the selected points
from their positions at T1 to their corresponding adjusted positions at
Ts (source time) and select the nearest m positions from the np
adjusted positions (recommended m = 4-8 points). Note that using
small m values (less than 4) will not improve the accuracy by
detecting abrupt and local details since the trajectories form a very
smooth surface already with no abrupt changes. Actually decreasing
m (less than 4) increases the chance of selecting the neighborhood
from one side only of the detection which is not favorable. On the
other side increasing m (more than 8) is also not desired to avoid
unnecessary computations and unnecessary smoothing of the inter-
polated trajectories.

Use ADJUSTT again to slide the m corresponding positions from time
T2 to time Td (i.e., slide the positions from time T2 to their corre-
sponding positions at Td).

Find the m corresponding spatial shifts (Dx;, Dy; and Dz;) between the
adjusted m positions at time Ts and the corresponding adjusted m
positions at time Td.

Use a spatial interpolation method to find the translation vector (DX,
DY, DZ) between the point of interest and its corresponding position
at Td. The IDW spatial interpolation method is used as follows
(Equation (4)):

i=1 Ltz i=1 Ltz
DX i=m i=m
Dy,' 1

br| - | 530 /501 @
DZ i=1 i i=1 i

mDZi i=m 1
/)%

Note that (Dx; Dy; Dz) denote the spatial shifts of the nearest
neighborhoods between their source and destination times (i varies from
1 to m); L; denotes the distance between the nearest neighborhoods and
the point under consideration (all at the same source time Ts); and (DX,
DY, and DZ) denote the interpolated spatial shifts of the point under
consideration between source and destination times.

i=1
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4. Case study and data pre-processing

Volcanic eruptions eject ash and sulfur dioxide in the atmosphere.
Ash threatens aviation while sulfur dioxide creates sulfate aerosol that
affects the Earth's energy budget and climate.

On June 4, 2011 the Chilean Puyehue-Cordén Caulle Complex
exploded injecting tons of ash in the southern atmosphere. This volcano
belongs to the Andean mountains where the center of the main vent is
located at 40.59°S and 72.117°W. The eruption arrived at the lower
stratosphere, and ash was carried by the southern jet stream and circled
the Earth. Accordingly, aviation in South America, Australia, and New
Zealand stopped for safety. This eruption has been studied from different
aspects in many studies (Castro et al., 2013; Schipper et al., 2013; Tuffen
et al., 2013; Kluser et al., 2013; Collini et al., 2013; Bignami et al., 2014;
and others).

The Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) and the Atmospheric Infrared Sounder (AIRS) can provide direct
measurements of the volcanic particles in the atmosphere. MIPAS can
provide altitude information but with very poor horizontal resolution
while AIRS provides good horizontal resolution with no altitude infor-
mation. Data developed by both sensors suffers other problems due to the
orbital time shift and data gaps. The datasets from the two satellites
combined with an atmospheric simulation produced by the Chemical
Lagrangian Model of the Stratosphere (CLaMS) constitute our case study.
All datasets cover the period from June to August 2011 and are obtained
from the Simulation Laboratory Climate Science at the Jiilich Super-
computing Center and the Institute of Energy and Climate Research,
Jiilich, Germany (Griessbach et al., 2014). Fig. 3 presents a schematic
diagram showing the data acquisition approaches followed in MIPAS and
AIRS sensors. In addition, and for verification purposes, raw archived VIS
(visible) and IR (infrared) images from geostationary weather satellites
(3 h resolution) have been obtained from NCDC (National Climatic Data
Center) at NOAA (National Oceanic and Atmospheric Administration).
The following subsections describe briefly the four data sets.

4.1. MIPAS

The Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) was operated by the European Space Agency from 2002 to 2012.
The sensor measures the atmosphere tangentially (i.e., the beam is
tangential to the Earth). The satellite finishes almost 14 orbits every day
and the longitudes of orbits change from day to another. MIPAS data has
very poor horizontal resolution since the measurements are taken along
the vertical direction only (almost 3 km vertical resolution). The vertical
extent is from 5 to 70 km height along the orbit track (note that the
vertical profiles are not exactly vertical due to the satellite speed). The

.MIPAS / ENVISAT

Fig. 3. Schematic diagram of the scanning methodologies of AIRS/AQUA and MIPAS/
Envisat satellites. AIRS scans the region of the atmosphere directly below the satellite (at
nadir) while MIPAS instrument scans the atmosphere tangential to the Earth. Note that
CLaMS trajectories are only given for MIPAS detections (and not for AIRS).
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advantages of MIPAS are that it provides very good vertical resolution
and is highly sensitive in detecting aerosol concentrations. Fig. 4 a gives a
daily sample full Earth scan of the satellite (i.e., 14 orbits) while Fig. 4 b
shows a 3D depiction of a single orbital data track showing the resolution
of the vertical profiles. The data set is time enabled point data with at-
tributes containing time, longitude, latitude, altitude, orbit number,
profile number, and detection codes. Detection codes are O for clear air, 1
for ice detections, 2 for ash detections and 4 for aerosol (SO5) detection.

4.2. AIRS

The Atmospheric Infrared Sounder (AIRS) is loaded on NASA's Aqua
orbital satellite, which was started in May 2002. AIRS detects the thermal
energy of the atmospheric materials just below the satellite (i.e., nadir)
and to both left and right of the ground track. A mirror rotates to scan the
sides of the track. AIRS is characterized with good horizontal resolution
and nearly global extent (twice a day). The disadvantages are the lack of

150°W

120°W GO:W SO:W

90°=
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elevation information, data gaps, and the different data acquisition times.
AIRS performs 14.5 orbits every day and acquires almost 2.9 million IR
measurements.

The data set contains two scalar values that are related to the sum of
SO, and ash in the atmospheric column. The attributes include time,
longitude, latitude, SO, index, ash index. Ash index means the existence
of ash where negative values mean high concentrations. SO, index is
related to the existence of SO5 (high positive values mean high concen-
tration of SO5). The data is provided in files where each file represents a
12 h period (i.e., AM and PM for each day). The following query
(Equation (5)) is used to discriminate significant detections out of the 1.4
million measurements in every 12 h data file:

(Ash< —0.5) AND (SO,>1) 5)

Fig. 5 shows a sample data file (i.e., 12 h) for AIRS data.

30°E 60°E 90°E  120°E  150°E 180°

60°N—

30°N

0°

ast—y }f
] >
% A
Y ¥ &
6°ST— AT & | & 4 —60°S
.a. N S s % ®
Koy e
] ) 1 1 1
180°  150°W 120°W  90°W 30°E  60°E  O0°E  120°E  150°E  180°

b

m

Fig. 4. a Sample full Earth tracks of MIPAS between 20110601010242 UTC and 20110602002534 UTC (i.e., almost during June 1st, 2011). The sequence of the tracks can be followed
either by color or by following the track numbers shown on the figure. Note that the shown “dots” actually represents quasi-vertical profiles where each profile samples the atmosphere
vertically every 3 km from 5 to 70 km altitudes (refer to Fig. 4b). The profiles are not exactly vertical due to the motion of the satellite. b 3D depiction of a single MIPAS track (track no. 6 in
Fig. 4a) illustrating the vertical profiles of MIPAS data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 5. Sample full Earth AIRS data file (containing 1.45 million point) during day 156 p.m. (June 5, 2011) between 20110605120531 UTC and 20110605235020 UTC. The legend shows
the time of measurement during the 12 h period while the blue color depicts the significant detections (i.e., Ash < -0.5 AND SO, > 1) near Puyehue-Cordén eruption site. Note that AIRS
data strips shift from data file to the next 12 h full Earth file and the time stamp also varies within the data file itself which create difficulties to convert the data to structured (i.e., raster)
data formats. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

4.3. CLaMS

The Chemical Lagrangian Model of the Stratosphere (CLaMS) is a
chemical transport model developed at Research Center Jiilich, Ger-
many. CLaMS was first described by McKenna et al. (2002) and was
expanded into three dimensions by Konopka et al. (2007). It contains
sub-modules for transport, chemistry, mixing and for microphysics that
can be included or excluded. CLaMS dataset used in this research is
developed using the trajectory module. This module determines the
trajectories for individual air masses. The trajectories are included for
MIPAS data set (described above). In other words, the data set is seeded
at the locations of MIPAS detections where trajectories go back in time to

180°

135°W

90°W

0°

the beginning of the data period, and extend in time for five consecutive
days after the acquisition time of every detection.

The trajectories can be used to determine the spatial and temporal
relations between the different data. In other words, for each MIPAS
detection, CLaMS dataset has a single polyline. The polyline is seeded at
the location of the MIPAS detection and extends forward and backward
in time as described above. Points on the polyline are sorted in increasing
temporal order. The raw data attributes contain the following fields per
point: time, longitude, latitude, altitude, and the dynamical properties.
The data set is pre-processed to add the following additional attributes:
polyline number, aj, ag, bi, b, c1, c2 (Section 2.1). Fig. 6 presents a
sample trajectory that explains CLaMS data.

90°E 135°E 180°

45°N 45°N
45°S 7 - 45°S
<’ = -
T )
180° 135°W 90°W 45°W 0° 45°E 90°E 135°E 180°

Fig. 6. Sample CLaMS trajectory corresponding to a MIPAS detection. The detection is shown as large dot south of Australia. The trajectory stretches back in time to the eruption time
(June 4, 2011) and forward in time to five days after the time of the detection. The time step of CLaMS simulation (i.e. time step between the points on the trajectory) is 3 h.
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4.4. Weather satellite images

The raw images are from seven geostationary satellites (GOES11,
GOES12, GOES13, METEOSAT7, METEOSAT9, FEN YUNG 2E, and
MTSAT). GIS (Geographic Information System) is used to pre-process the
raw IR images as follows: (1) the raw images are first geo-referenced in
the satellite vertical perspective projection; (2) the images are then re-
projected in the common coordinate system (i.e., geographic WGS84
system); (3) finally a mosaic of the projected images is then produced in
the common coordinate system to generate one image covering the globe
at every time step. Fig. 7 a shows sample 2 full disk images from GOES12
and MTSAT geo-referenced each in its separate satellite perspective co-
ordinate system while Fig. 7 b shows the same two images after re-
projection in the common geographic coordinate system. It should be
noted that care should be taken in discriminating volcanic ash plumes
from convective clouds since they both appear similar on IR weather

GOES12 image at 20110606114500 UTC
geo-referenced in a vertical perspective projection
(central longitude = 50W, satellite height = 35800 km)

1,500
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satellite images. Hence, all possible information (i.e., AIRS and MIPAS)
can help to determine where to look for the ash plume on weather sat-
ellite mages.

5. Application

The following subsections demonstrate the effectiveness of the TTA at
performing a number of tasks; namely, artificial plume generation,
spatiotemporal correction, and the joining of multi-source spatiotem-
poral data.

5.1. Generation of CLaMS-based volcanic plumes

We first illustrate the TSTI effectiveness by generating CLaMS-based
plume (i.e., simulation plume) for Puyehue-Cordén volcano on a high
resolution time scale. The simulated plume can be used for assessing the

MTSAT image at 20110606114500 UTC
geo-referenced in a vertical perspective projection
(central longitude = 140E, satellite height = 35800 km)

3,000

Kilometers

180° 150°W 120°W 90°W 60°W 30°W
1 1 1 1 1 1

a

12?"E

150°E 180°
1 L

0°

30°S:

30°N

0°

=

T T T T
180° 150°W 120°W 90°W 60°W

T
0°

b

T T T T
30°E 60°E 90°E 120°E 150°E

Fig. 7. a Sample 2 IR images from GOES12 and MTSAT at 20110606114500 UTC geo-referenced each in its separate vertical satellite perspective coordinate system. b The two sample IR
images at 20110606114500 UTC after re-projection in the World Geodetic System 1984 (WGS 1984) common geographic coordinate system.
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impact on aviation. It should be noted here that there are a group of
different plume simulation models (e.g., Stohl et al., 2005; Stunder et al.,
2007; Dacre and Coauthors, 2011). The performance of these models
suffers complications related to the uncertainty of the initial condition as
well the other problems related to the accuracy on the long term (Vernier
et al., 2013). Complications aside, we do not seek to compete with these
models, as we are not tackling the physical process sensu stricto in terms
of mass balance and dispersion/diffusion in the ambient atmosphere.
Rather, we employ TSTI for plume simulation in order to demonstrate the
effectiveness of the method and to provide a relatively simple alternative
for the simulation of plume dispersion in real or near-real time. We
anticipate that this method will be of particular use in assessing the
impact of volcanic plumes on aviation, for example.

For this purpose, a number of points are injected at the eruptive vent
(17 points are used on two concentric circles at the eruptive vent every
15 min time step during the eruption time period) and left to be slide by the
TSTI method within the flow field (i.e., left to self-adjust within the flow
field via the TSTI method). The 17 points include 1 point at the center and
8 points on each of the two circles (i.e., equally separated by 45° radial
angles). The TSTTis used to advect the simulated plume by determining the
positions of the growing plume array of points every time step. Note that
the simulated plume points essentially do not have corresponding

0°:

30°S

60°S—e

0°

30°S

60°S=—

0°

30°S

60°S:

20110605144500UTC

20110605174500UTC
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trajectories in CLaMS dataset and here lies the importance of TSTIL.

Fig. 8 shows sequence frames of the simulated plume overlaid on top
of GOES12 images at 3-h intervals (i.e., the temporal resolution of
GOES12 archived data). The visual comparisons of the simulated plume
and weather satellite images enable accuracy verification of both TSTI
and CLaMS simulations. As shown in Fig. 8, the evolution of the TSTI
simulated plume matches GOES12 IR images. The average correlation
coefficient between a rasterized version of the simulated plume and the
observed plume is 0.58. More details of this comparison can be found in
Elshehaly et al. (2015).

It must be noted that the above simulation procedure does not ac-
count for the lateral dispersion of the plume. The seed points being
advected here (i.e., growing array of points) can be considered as the
plume core that may disperse/diffuse laterally. In order to account for
lateral dispersion, a modification of the above procedure is required. This
modification requires adding a concentration attribute field to the seeded
points (originally seeded at the volcano vent). All points are considered
“parents” and are allowed to give birth to lateral “child” points (i.e.,
allowed to split laterally). Fractions of the parent concentration are then
divided on the children according to the lateral dispersion coefficient.
The children are then added to the plume growing array, get advected
again with the flow, and can give birth to new children. The inclusion of
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Fig. 8. TSTI simulated plume (shown in red dots) overlayed on top of GOES12 satellite images every 3 h time step (i.e., the time step of the archived satellites images). The plume is
generated by injecting 17 points on the volcano opening every 15 min. At every time step, the newly injected points and the old plume points are advected using the developed TSTI
method. Note that plume evolution perfectly matches the satellite images giving rise to the accuracies of both CLaMS simulation and the developed TSTI method. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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this lateral dispersion modification is left for future studies.

5.2. Construction of full earth AIRS scans (spatiotemporal correction)

The time stamps of MIPAS and AIRS data differ from one data point to
another depending on the satellite position along its track. For example,
an AIRS point may have been acquired in the beginning of the day while
another point can be after 12 h and both are saved in the same data file.
In addition, the difference in time between an AIRS strip and the adjacent
strip is approximately 100 min (Fig. 5). Hence, this difference in time
leads to discontinuity of the detected patterns since the patterns have
actually been detected at different times.

For global presentation of the data or for the purpose of AIRS data ras-
terization, it is always desirable to construct a full Earth instantaneous scan
of the data (i.e., shift the data to its location at the selected reporting time).
For this purpose, TSTI is used to first project AIRS detections on MIPAS
surfaces created exactly at the time of each AIRS detection (refer to the
following section) then advect AIRS detections to any target time by
interpolating its position at the required target time. Fig. 9 a presents a
sample raw AIRS data where each detection has different acquisition time
(i.e., “asis”) while Fig. 9 b presents the same data after time-shift correction.

5.3. Spatiotemporal join between AIRS & MIPAS

MIPAS and AIRS are different sensors with individual strengths and
weaknesses. In particular, AIRS provides contiguous satellite coverage

40°S:

40°S

40°W 20°W
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whereas MIPAS data consists of far fewer points along tracks only. MIPAS
provides solid altitude information while AIRS doesn't. It would be very
useful to blend the data acquired from the two sensors. For example, if
altitude information can be interpolated from MIPAS into AIRS (which is
very difficult to be achieved using the traditional techniques of seeding
data into the circulation model itself), this will blend the best of both
worlds. This will be very useful to different applications such as evalu-
ating how far the two instruments agree, identifying safe air corridors for
flight traffic (i.e., in the horizontal and vertical), and for 3D plume
visualization purposes. This may also prove extremely useful for
modelling ash aggregation and disaggregation processes. See Mueller
et al. (2017) for an example.

TSTI is used here also to perform the spatiotemporal interpolation
from MIPAS altitudes into AIRS in order to assign elevation values to
AIRS (Fig. 10). This assignment can be done either on-the-fly during
time-shift correction (Section 4.3) or by processing the raw AIRS data
directly. For every AIRS detection, the nearest 8 neighbors (in space and
time) from CLaMS positions (that actually represent MIPAS detections)
are selected and the spatiotemporal interpolation is performed.

6. GPU-BASED interactive tracking

The TTA (Trajectory-based Tracking Analysis) is amenable to massive
parallelization, since it operates independently for every point that needs
to be advected through the flow field. We have developed a GPU
(Graphic Processing Unit)-based version of our tracking technique to

20°S

40°S

20°S

40°S

0° 20°E

Fig. 9. Application of the TSTI method to spatiotemporally correct AIRS data. The upper panel shows sample raw AIRS data spanning 12 h “as is” and the lower panel shows the corrected
AIRS data using the TSTI method. Note that the raw data have different acquisition times. The time difference between the patterns on the right and left of the raw data is almost 12 h. This
is because the full Earth orbits started on the left and ended at the right having almost 14 orbits and 12 h in between. During this time the patterns on the left moved eastward and got
detected again in the last orbit at the end of the full Earth coverage. Hence, parts of the patterns got detected twice and included in the same data file. The TSTI solved this problem by
shifting all AIRS detections to its correct position at a target time equal to GOES 12 acquisition time and hence creating proper overlapping.
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Fig. 10. Application of the TSTI to produce full Earth instantaneous AIRS scans at any selected target times (every 12 h is used here) and spatiotemporally join MIPAS altitudes to AIRS
detection. The figure depicts the evolution of the 2011 Puyehue-Corddn volcanic plume as observed on TSTI-corrected AIRS data every 12 h. Note that AIRS altitudes have been assigned
from MIPAS altitudes based on the trajectory-based spatiotemporal interpolation method (TSTI) developed in this research.

support interactive visualization for different purposes including the
determination of particle sources (Elshehaly et al., 2014) and for creating
region-of-interest reference datasets for the interactive data fusion and
tracking (Elshehaly et al., 2015). To this end, the TSTI method is used
during pre-processing to construct a regular reference model (i.e.,
simulated plume dataset) that densely represents the spatiotemporal
evolution of the plume behavior in a Lagrangian (i.e., moving and
growing) region of interest.

The reference model is then used in our GPU parallel algorithm to
interactively advect AIRS measurements on the model and track their
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location at any given point in time. This allows the user to interactively
correct AIRS detections at any time by controlling a time slider. In this
case, the source time step Ts is determined by the timestamp of the
original detection point while the time instance selected by the user
becomes our destination time step Td. AIRS points are mapped to their
nearest neighborhood in the CLaMS dataset using OpenGL's vertex
shader, i.e. one detection point per shader instance. The use of a regular
reference model, as constructed by TTA, optimizes global memory access
on the GPU and yields interactive rates.
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Table 1
TTA runtimes for 1.4 million CLaMS vertices (CPU).

“Sample size n "No. Nbrhd used m ‘Runtime (sec)

5000 8 7
1458000 8 1130

# Sample size n is the number of points requiring spatiotemporal interpolation.

P No. Nbrhd used m is the number of nearest trajectories used in the spatiotemporal
interpolation.

¢ Runtime on Core 2Duo @ 2.66 Ghz, 3.5 GB RAM (including the time to load the
simulation data into memory).

7. Technical details

Due to the large storage size of the data involved, high level pro-
gramming environments were not feasible since they would consume the
computation resources and take too long to process the data. Accord-
ingly, plain C programming was used to implement TSTI. The main idea
is that CLaMS data is read into memory as a two-dimensional array in
which the first index is the polyline number and the second is time.
Hence, CLaMS data is quickly retrieved for any trajectory at any desired
time. CPU runtime is generally within few seconds to a few tens of mi-
nutes (Table 1). This is quite acceptable for offline preprocessing. How-
ever, this runtime can be significantly improved using acceleration data
structures to speed up the neighborhood search within the simulation
data set (i.e., CLaMS).

We rendered the visualizations using OpenGL 4.4 on an NVIDIA
GeForce GT 740 M/PCle/SSE2 GPU, and Shader Language GLSL 4.40.
The developed GPU interface enabled motion animation of all overlaid
datasets at interactive rates. In addition, the results of the CPU-TSTI
simulations were fed to the shaders in the vertex array buffer and were
rendered at an average frame rate of 60 FPS. Color encoding was
controlled through attribute sliders that enable the user to interactively
modify the visual encoding of the plume points and display different
value combinations of SO, and ash index attributes (refer to Equation
(5)). The values set by the user through the sliders were passed to the
shader as uniforms and were used as parameters to the calculation of
both color and opacity for each individual point.

In our GPU-based tracking, raw AIRS data (i.e. original detection
points) was fed to the vertex shader. The shader then performed the
nearest neighbor search and interpolation calculations in parallel on each
point. The average frame rate achieved for both tracking and rendering is
20 FPS. This frame rate can be improved through the use of a more so-
phisticated nearest neighbor search, which is the focus of our future
work. The details of the GPU implementation can be found in Elshehaly
et al. (2015).

8. Conclusions and discussion

This paper presents a spatiotemporal interpolation technique TSTI
(Trajectory-based Spatial and Temporal Interpolation) for spatiotem-
poral interpolation of time variant data in unsteady flow field. The
effectiveness is demonstrated using multiple source data sets for eruption
events in the atmosphere. The demonstration included different tasks
such as plume simulation, spatiotemporal joining of data from multiple
sources, spatiotemporal correction, re-sampling of irregular space-time
data into regular datasets, filling data gaps, and the generation for
region-of-interest reference datasets for GPU-based visualizations. The
TSTI showed excellent results and can be considered (to the best of the
authors’ knowledge) the first efficiently automated geostatistical tech-
nique to advect/join large scatter and time-enabled data in space
and time.

The main application that strongly benefits from the TSTI method is
the construction of global instantaneous maps of polar satellite data and
joining this data to measurements acquired by other sensors regardless of
the variable being measured. The variable under consideration can be a
volcanic substance, pollutant, smoke, cloud, or even rainfall intensity.
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Indeed, the construction of instantaneous global rainfall intensity mo-
saics from the time variant strips of polar weather satellites, in concert
with data from other sensors, is another strong candidate for the appli-
cation of our method. In general, the TSTI method may be applied to any
problem involving observations of a spatiotemporally-variable substance
freely moving in a flow field (especially in large-scale atmospheric and
oceanic circulations).

The accuracy depends mainly on the accuracy of the underlying tra-
jectory information describing the flow field. For the case study
described in this paper, an alternative for the underlying numerical
simulation is the flow fields developed through the known techniques of
cross-correlating portions of geostationary weather satellite images in the
successive times. Ongoing research includes the conversion of TSTI into
real-time forecasting mode by using exponential smoothing to encode
the method.
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