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ABSTRACT

Recursion is both an important and a difficult topic for introductory Computer Sci-
ence students. Students often develop misconceptions about the topic that need to
be diagnosed and corrected. In this paper we report on our initial attempts to de-
velop a concept inventory that measures student misconceptions on basic recursion
topics. We present a collection of misconceptions and difficulties encountered by
students when learning introductory recursion as presented in a typical CS2 course.
Based on this collection, a draft concept inventory in the form of a series of ques-
tions was developed and evaluated, with the question rubric tagged to the list of
misconceptions and difficulties.

KEYWORDS
Recursion, Concept Inventory, Misconceptions

1. Introduction

Recursion is both an important and a difficult topic for introductory Computer Sci-
ence students. Recursion is one the most important and hardest topics in lower division
computer science courses (Dalel |2006; (Goldman et al., [2010; Hertz & Ford, [2013; Tew
& Guzdial, [2011)). Efforts can be made to enhance the learning of recursion through
interventions such as allowing student to practice exercises that address their miscon-
ceptions (Hamouda, Edwards, Elmongui, Ernst, & Shaffer, 2018). But evaluating any
such interventions depend on being able to effectively measure a given student’s under-
standing both before and after the intervention. This need for a reliable measurement
tool is the main motivation to this work.

Students often develop misconceptions about the topic that need to be diagnosed
and corrected. In order to assess student progress, it is helpful to have a test that
can recognize whether a given student has the known misconceptions. A Concept
Inventory (CI) is a test that can classify an examinee as either someone who thinks in
accordance with accepted conceptions on a body of knowledge or in accordance with
common misconceptions (Adams & Wieman, 2011; Rowe & Smaill, [2007)).
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To be considered a successful and valid instrument, a CI must be approved by
content experts. A CI is not a comprehensive test of everything a student should know
about a topic after instruction (Herman, 2011)). Rather, CIs selectively test only critical
concepts of a topic (Rowe & Smaill, 2007), since these are required to be considered
to have mastered the topic.

CIs have been successfully developed and used in STEM disciplines like
Physics (Savinainen & Scott, 2002), Chemistry (Krause, Birk, Bauer, Jenkins, &
Pavelichl, [2004) and Biology (D’Avanzol 2008) to drive discipline-specific education
research and pedagogical reforms (Almstrum et al.; 2006; (Taylor et al., 2014). For
example, in Physics, the Force Concept Inventory (FCI) showed gaps between how
students and instructors think about concepts related to mechanics (Savinainen &
Scott}, 2002). In Computer Science, the development of concept inventories is grow-
ing. The related work section presents efforts in Computer Science concept inventory
development. This paper describes our process used to develop a concept inventory
that measures students understanding of basic recursion. We began by developing a
collection of misconceptions and difficulties encountered by students when learning in-
troductory recursion as presented in a typical CS1 or CS2 course. We then developed
a series of questions, with the question rubric tagged to the list of misconceptions and
difficulties. Care was taken to ensure that as many of the items on the misconceptions
and difficulties list as possible are covered by multiple concept inventory questions.

2. Related Work

In Computer Science, the development and use of Cls is rapidly growing. We are aware
of efforts to develop CIs for the topics of discrete math (Almstrum et al., 2006), digital
logic (Herman, Loui, & Zilles, |2010), operating systems (Andrus & Nieh} 2012; Webb
& Taylor} |2014])), introductory programming courses (Kaczmarczyk, Petrick, East, &
Herman), 2010), algorithms and data structures (Danielsiek, Paul, & Vahrenhold, 2012;
Paul & Vahrenhold, 2013), Binary Search Trees (Karpierz & Wolfman, 2014), and
Object Oriented Programming (Ragonis & Ben-Ari, 2005). Our research group has also
recently developed a concept inventory for introductory Algorithm Analysis (Farghally,
Koh, Ernst, & Shaffer, 2017)). In the remainder of this section, we present an overview
for many of these efforts.

Kaczmarczyk et. al (2010) worked to find student misconceptions in a CS1-level
programming course. Using a Delphi process (Dalkey & Helmer, |1963)), the authors
gathered 30 concepts from a pool of experts that they think are the most difficult in
CS1 programming. From these the authors selected ten concepts as their initial focus
of interest. They are: memory model, references and pointers, primitive and reference
type variables, control flow, iteration and loops, types, conditionals, assignment state-
ments, arrays, and operator precedence. The authors designed a test of 18 questions
covering the concepts of interest. In order to make sure that the results are not problem
dependent, each concept was covered in questions with at least two different variations.
The authors conducted student interviews to help them understand student miscon-
ceptions regarding the targeted concepts. Eleven undergraduate students participated
in the interviews. These students were either currently or recently enrolled in the CS1
course. Each interview lasted about an hour and was audio and video recorded. In
the interviews, each student was asked to solve questions for all ten concepts. The
purpose of the interview was to reveal the misconceptions of the students and validate
the Delphi expert’s conclusions about the difficult concepts. The authors analyzed the



student interviews and described in detail the misconceptions found in memory model
representation and default value assignment of primitive values.

Danielsiek et. al (2012) described their first steps towards building a concept inven-
tory for Algorithms and Data Structures. Their results were based on expert interviews
and the analysis of 400 exams to identify the core concepts that are considered to be
associated with misconceptions. They reported a pilot study to verify misconceptions
previously reported in the literature, and to identify additional misconceptions. They
have then wrote an initial instrument to detect misconceptions related to algorithms
and data structures (Paul & Vahrenhold, [2013). They presented the results from a
second study that aimed at assessing first-year student misconceptions. Their sec-
ond study confirmed findings from the previous small-scale studies, but additionally
broadened the scope of the topics.

Karpierz et. al (2014)) report an initial effort to determine misconceptions and design
a CI for Binary Search Trees and Hash Tables. They focused on iterative methods
rather than recursion. The authors found student misconceptions by showing exam
responses to nine instructors, showing them sample exam responses with the goal to
understand how an expert reorganizes something important that the audience does
not. The authors also reviewed more than 200 exam problems along with project
code to determine the most difficult problems. They interviewed 25 students who
each solved two questions while thinking aloud. The authors found three main topics
where students hold misconceptions: the possibility of duplicates in BSTs, conflation
of Heaps and BSTs, and Hash table resizing. The authors designed three multiple
choice questions to address those misconceptions.

Ragonis and Ben Ari (2005) presented an initial effort to identify misconceptions
and difficulties in object oriented programming (OOP). The authors gathered data
during two academic years from students studying OOP in tenth grade CS. The data
gathered included home works, lab exercises, tests, and projects. They used these data
to identify a comprehensive categorized list of misconceptions and difficulties in OOP
understanding. One novel aspect of this work is the reporting of difficulties in addition
to misconceptions.

Taylor (2014)) presented a recent survey paper on Computer Science Cls. It includes
a recommendation to build Cls for topics that should evaluate student’s ability to
engage in processes such as code analysis, program design, program modification, and
testing, as these aspects of learning are difficult to assess. Similarly, Zingaro (2012)
notes that it is hard to evaluate traditional code writing exercises.

3. Building a CI

This section presents the steps that have come to be considered best practice when
building a CI, and then for measuring a CI’s reliability and validity (Goldman et
al. [2008; Herman| 2011} [Herman et al. [2010; [Krone, Hollingsworth, Sitaraman, &
Hallstrom, 2010; Nelson, Geist, Miller, Streveler, & Olds, 2007).

(1) Choose concepts (set the scope): First a set of concepts should be chosen
by the CI developers to define the CI’s scope. To assure that the CI is a valid
assessment tool, many domain experts must acknowledge that the tool assesses
the right content, and that it does in fact assess what it claims to assess By
involving expert opinion from the beginning of the CI development process, we
can trust that the designed CI assesses core concepts, and that it has appropriate



content validity (Allen & Yen, 2001).

(2) Identify misconceptions: Instructors and students can be interviewed to iden-
tify the specific sub-topics that students struggle to understand. Instructors can
identify students’ misconceptions from their teaching and exam-marking experi-
ence. Students can also be helpful in identifying their confusion about a certain
topic (Allen & Yenl| 2001)).

(3) Write CI items and draft the CI (write the questions): The CI developers
should use the misconceptions identified from the previous step to formulate
the CI questions. The questions could be multiple choice (MCQ), or any other
type of question where incorrect answers can be used to identify the associated
misconception. For the sake of reliability, the CI would ideally test every concept
multiple times (Buck, Wage, Hjalmarson, & Nelson, 2007)).

After writing questions for the initial CI, refinement and validation are done
through two feedback cycles: the student feedback cycle and the expert feedback
cycle.

(4) Student feedback cycle: CI developers should give the CI to students and
analyze the quality of the CI through interviews and statistical analysis. The
interviews should ask students about the clarity of the questions and the answer
choices (for MCQs) and find out if the students are truly solving the questions
wrongly when they have the targeted misconception. In this step the reliability
of the CI is to be measured to assess the prevalence of various misconceptions,
and explore the data for differences in performance between sample populations.
The CI should be revised and improved based on these analyses before repeating
this cycle.

(5) Expert feedback cycle: The CI content and individual items are evaluated by
experts. The opinions from a diverse group of experts can reach consensus by
using a Delphi process (Dalkey & Helmer, 1963), an approach that has been used
to develop previous Cls (Goldman et al., 2008; Gray, Evans, Cornwell, Costanzo,
& Self, 2003} Streveler, Olds, Miller, & Nelson, [2003)).

(6) Iterate: The above sequence of steps could be repeated many times, until a reli-
able and valid CI is achieved. After each iteration, the CI is revised and modified
to do a better job of evaluating student misconceptions, and the reliability and
validity are measured.

3.1. Measuring a CI’s Reliability and Validity

Reliability of a CI is usually estimated by three methods: test-retest reliability, split-
half reliability, and the Cronbach alpha.

In the test-retest method, the reliability of the CI is measured by giving students
the CI multiple times in close succession (Allen & Yen| 2001)). Test-retest is not usually
done because it is a time consuming process and the students can learn little by taking
the instrument multiple times, so its results may not be accurate.

Split-half reliability splits the test into two halves and treats each sub-test as a
separate instance of the instrument. An estimate of the total reliability is made by
building a correlation between the observed scores on the two sub-tests.

The most commonly used method is Cronbach alpha, which finds the average split-
half reliability of every possible set of sub-tests. The Cronbach alpha value ranges from
-1 to 1 like a correlation coefficient. A cut-off value is selected for alpha above which
the CI is considered to be reliable. For example, Herman (2011) suggests a cut-off of



0.70 for the alpha value, because a high level of reliability was required. Cls need a high
level of reliability to be used as a research instrument. However, some inconsistency
can be acceptable, since students are inconsistent when they apply their conceptual
knowledge.

3.2. Validity

The validity of an instrument can be estimated by correlating the observed scores of a
newly created instrument with the observed scores of an accepted instrument (Allen &
Yen, [2001)). If there is no currently accepted instrument to measure the true score of a
topic, statistical methods cannot be used to estimate the validity. Statistical estimates
for the reliability for the instrument can potentially invalidate an instrument. As the
reliability of an instrument decreases, the validity of the instrument also decreases. If
the CI has a Cronbach alpha value below the selected cut-off, then it should not be
considered as valid.

Validity can also be established in some cases through face validity and content
validity (Allen & Yen, [2001). Face validity exists if the typical person who is familiar
with the material believes at first glance that the instrument measures the true score.
Face validity must be done along with content validity to ensure the instrument’s
validity. Content validity is done by systematically polling the opinions of experts to
see if they believe that the instrument measures the true score (Allen & Yen, 2001]).
To test the validity of an instrument, its developers must clearly define what the
instrument measures.

The next sections document how we followed the typical steps of building a concept
inventory to build a draft basic recursion concept inventory.

4. Building the Recursion Concept Inventory

4.1. Choose Concepts

The first step in building a CI is to identify the concepts (topics) based on experts’
rating for its difficulty and importance. Previous research has determined the most
common problematic topics that lead to students’ misunderstanding of recursion. For
example, Sanders and Scholtz (2012) claimed that a key factor in mastering recursion
is understanding how the program moves from active control, to the base case, and
then to passive control in recursive functions. The complexity of the flow-of-control
mechanism makes it a difficult concept for students to comprehend. It was found
also that in most cases, students that have some difficulty with active flow are also
confused about passive flow, and have misconceptions about the base case (Scholtz
& Sanders, [2010). In addition, students are confused with the comparison to loop
structures (Benander & Benander} 2008), and the lack of everyday analogies.

The following is a list of previously identified common problematic topics found in
the literature for teaching recursion, ranked based on the frequency of appearance in
the literature:

e Passive/backward control flow after reaching the base case (George, 2000;
Sanders & Scholtzl, 2012 [Scholtz & Sanders, [2010))

e The limiting case (George, 2000; Sanders & Scholtz, [2012).

e Active flow (Georgel 2000; Sanders & Scholtz, [2012]).

e Comparison to loop structures (Benander & Benander, [2008).



e Variable updating either due to difficulty in evaluating a conditional statement
or difficulty in understanding an explicit update statement (Georgel, 2000).

We began with the topics list that we gathered from the literature. We this extended
this list and broke some of the topics into multiple parts to be more descriptive and
understandable. We also changed the wording of some topics to be more clear. We
then provided the resulting list of topics along with brief description of each topic to
22 instructors to determine their opinions. The extended topics list presented to the
instructors is as follows.

Backward flow (BF): Passive control flow after reaching the base case.

Active flow (AF): Active control flow until reaching the base case.

Recursive calls (RC): How to formulate the recursive call.

Limiting case (LC): How to formulate the stopping condition and when it will

be triggered.

e Infinite recursion (INF): Wrongly write or call the recursive function so that the
limiting case is never reached.

e Confusion with loop structure (LP): Implementing recursive functions (especially
tail recursion) as a loop.

e Variable updating (VU): Unawareness of how variables are updated on every

recursive call.

We asked the instructors to order the list with respect to how confusing they think
that the topics are to students. We encouraged the instructors to add, delete, merge,
or re-word the topics if needed. Two instructors were interviewed face to face, after
which we emailed the list to 20 other instructors, along with instructions on how we
wished the list to be evaluated and modified. We received replies from 10 out of the 20
instructors. The instructors who replied were from five different institutions in three
different countries. Overall, the twelve instructors provided minor modifications on the
names or the order of the concepts, and all agreed on the fundamental presentation.

4.2. Identify Misconceptions

The next step in building a CI is to identify the misconceptions that students have re-
lated to the identified topics. To find out student misconceptions, typically, instructors
and student interviews are conducted. We sent invitations by email to ten students
taking CS2114: Data Structures and Software Design (a traditional CS2 course) during
Spring 2014 at Virginia Tech. We asked them to come for interviews. We received a
positive reply and interviewed two students. Participation was voluntary and records
were stripped of identification after the interviews were completed. The interview was
audio recorded and the students were made aware of that. The students solved 8 recur-
sion tracing exercises and one code writing exercise. Since student participation was
low, it did not help us in finding student misconceptions. The common misconception
found in the answers of both students interviewed was related to backward flow, where
the students did not understand what happens to information after the recursive call.

Our primary sources of information for deducing student misconceptions were test
answers and the research literature. We analyzed approximately 8000 responses to
recursion questions given to students over three semesters in pre-test, post-test, mid-
term, or final exams of CS2114: Data Structures and Software Design to find the
most common misconceptions. Table [1| shows the number of students and recursion
questions on each test.



Table 1. Number of students and number of recursion questions per each exams.

Exam # of Students | # of Questions
Pre-test Spring 2014 152 10

Mid-term Spring 2014 | 160 5

Pre-test Fall 2014 178 8

Mid-term Fall 2014 216 4

Post-test Fall 2014 203 8

Pre-test Spring 2015 166 )

Mid-term SPring 2015 | 43 5

Final SPring 2015 167 4

We have chosen to present our findings from the interviews and the analysis of
student answers as a list of misconceptions and difficulties, inspired by Ragonis and
Ben Ari’s work on object-oriented programming (Ragonis & Ben-Ari, [2005). A mis-
conception is a mistaken idea or view resulting from a misunderstanding of something.
Difficulty here means the empirically observed inability to do something. It is possible
that a student exhibits a difficulty due to an underlying misconception (possibly one
already listed here or one so far unidentified). A difficulty might also result because
the student lacks some skill or knowledge.

The following is the list of common misconceptions and difficulties that we found,
categorized by the topic related. We give each an identification tag for use in our
analysis presented in later sections of this paper.

4.2.0.1. Backward Flow.

(1) Misconception: No statements after the recursive call will execute. [BFneverEx-
ecute]

(2) Misconception: Statements that come after the recursive call will execute before
the recursive call is executed. [BFexecuteBefore]

4.2.0.2. Infinite Recursion.

(3) Misconception: If there is a base case then it will always execute. If the recursive
call does not reduce the problem to the base case, then the base case will return,
and that will terminate the recursive method. [InfiniteExecution]

4.2.0.3. Recursive Call.

(4) Difficulty: Cannot formulate a recursive call that eventually reaches the base
case. [RCwrite]

(5) Misconception: A value will be returned from a recursive call even if the return
keyword is omitted. [RCnoReturnRequired|

(6) Misconception: All recursive calls require the return keyword even if the recur-
sive function does not return a value. [RCreturnIsRequired]

4.2.0.4. Base Case.

(7) Misconception: The base case must appear before the recursive call. The base
case must be in the if condition, while the recursive call must be in the else con-
dition or an if else condition. So the student has difficulty recognizing whether



the recursive call or the base case is executed when tracing code. [BCbeforeRe-
cursiveCase]

(8) Misconception: The base case action must always return a constant, not a vari-
able. [BCactionReturnConstant]

(9) Misconception: The base case condition must always check a variable against a
constant, not against another variable. [BCcheckAganistConstant]

(10) Difficulty: Cannot write a correct base case. The student is given a description for
what a function should do, and an incomplete implementation for the function
with a missing or incorrect base case. The student has difficulty coming up with
a correct base case to complete the implementation. [BCwrite]

(11) Difficulty: Cannot properly evaluate the value for the base case. In nearly all
such cases, the student believes that the recursive method executes one more or
one less time than it actually does. [BCevaluation]

4.2.0.5. Updating Variables.

(12) Misconception: Prior to the recursive call, we can (within the recursive function)
define a “global” variable that is initialized once and updates when each recursive
call is executed. [GlobalVariable]

4.3. Write CI Items and Draft the CI

The third step in creating a CI is to write initial CI items (questions) based on the
misconceptions generated from the previous step. We initially attempted to create a
Concept Inventory as a series of multiple choice questions, with each question targeted
to identify whether a student has a particular misconception or not.

We quickly realized that a given multiple choice question with multiple distractors
naturally relates to several misconceptions or difficulties, where each distractor ideally
relates to a specific misconception or difficulty. We also realized that the nature of
our topic lends itself to exercises where the student needs to determine the result of
executing a piece of code. It did not seem productive to limit the student to a specific
list of distractors, as this would both “lead the witness” and also preclude discovering
that students had previously unrecognized misconceptions or difficulties. Thus, all the
questions are cast as “fill in the blank” (or free answer) questions, with a rubric that
identifies the misconception or difficulty that would lead to a specific answer. If in
the process of evaluating the answers to the concept inventory it is found that some
answer not in the rubric is frequently given by students, this would suggest the need for
further analysis to discover the cause. The initial rubrics for most of the questions are
created from the answers that we have seen from approximately 8000 test responses.
The first and the second iterations of the draft CI questions and the misconceptions
measured by each question can be found in [A]

4.4. Recursion CI Administration

The first administration was done using the first draft concept inventory. The CI was
given to 23 students as a part of the mid-term exam in CS2114 during Summer II at
Virginia Tech. The mid-term exam had a total of 21 questions, of which 10 questions
were on recursion (the first iteration concept inventory questions in .

After refining the first draft concept inventory, we came up with the second draft



CI. The second administration was done using the second draft concept inventory.
The CI was given to 111 students as a part of the mid-term exam in another course
in another institution, CSE017 during Fall 2015 at Lehigh University. The mid-term
exam had a total of 15 questions, of which 6 questions were on recursion. The second
iteration concept inventory questions are shown in .

5. Reliability and Validity

5.1. CI Reliability

We measure CI internal consistency as a measure of reliability. The CI was given as a
test to CS2114 students during Summer II. To measure reliability we used Cronbach-
a. The CS2114 exam had a Cronbach-a reliability rating of 0.8. This preliminary
finding indicates that the inventory has acceptable (above 0.5 is considered acceptable)
internal consistency reliability after the first administration.

5.2. CI Validity

5.2.1. First Administration

On our initial design of the rubric for each question, we tried to base the rubrics on
patterns that we have seen in previous student responses to recursion questions. We
checked student answers on the test administered in Summer II to see if, for each
question, all candidate answers that we had in the rubrics have been given by the
students. We found that all candidate answers in the question rubrics were indeed
given by the students. We found one answer that was not already covered by the
rubric for each of Questions 1, 8 and 9, and so we have updated the rubrics to include
those answers. We also found that Question 3 was answered correctly more than any
other question. 95% of the students solved the question correctly. We conclude that
the misconception covered by Question 3 is not widely held by the students. We
looked at each of the ten CI questions for all the 23 students. We believe that the
design of the question and rubric items make a reasonable grader agree that, given
certain answers, the student holds the matching misconception as listed in our rubrics.
For each question, we have determined the corresponding misconceptions from our
rubric for that question. We counted the number of student answers that express each
misconception. Table [2| shows the percentage of Summer II students who appear to
hold each misconception.

We checked to see if better performance on the entire CI correlated with better
performance on individual questions, a process referred to as item response analy-
sis (Crocker & Alginal [1986). So in addition to the classical test theory (CTT), we
also used Item response theory (IRT) to evaluate the CI. CTT has the following three
problems that IRT solved for us: (An & Yung, [2014):

e CTT has a limitation that the item and student characteristics, such as item
difficulty parameters and student scores, are not discernible. Depending on the
subpopulation in question, item characteristics might change. If a high-ability
subpopulation is considered, all test items would appear to be easy. But when a
low-ability subpopulation is considered, the same set of items would be difficult.
This limitation makes it difficult to assess individuals abilities by using different
test forms. However, using IRT, the item characteristics and the personal abilities



Table 2. The percentage of students holding each Misconception based on the first CI administration

Misconception Percentage
BF neverExecute| 17.4%
BFexecuteBefore| 13.04%
InfiniteExecution| 4.35%
RCwrite] 0%
RCnoReturnRequired| 8.7%
RCreturnIsRequired 8.7%

BCbeforeRecursiveCase| 8.7%
BCactionReturnConstant| | 4.35%
BCcheckAganistConstant| | 0%

BCwrite| 0%
BCevaluation 21.75%
GlobalVariab e| 30.43%

are formulated by distinctive parameters. After the items are calibrated for a
population, the scores for subjects from that population can be compared directly
even if they answer different subsets of the items.

e The definition of reliability in CTT is based on parallel tests, which are difficult
to achieve in practice. The precision of measurement is the same for all scores for
a particular sample. In CT'T, longer tests are usually more reliable than shorter
tests. However, reliability in IRT is defined as a function that is conditional
on the scores of the measured latent construct. Precision of measurement dif-
fers across the latent construct continuum and can be generalized to the whole
target population. With IRT, measurement precision is often depicted by the in-
formation curves. These curves can be treated as a function of the latent factor
conditional on the item parameters. They can be calculated for an individual
item or for the whole test.

e Missing values in CTT are difficult to handle during both test development
and subject scoring. Subjects who have one or more missing responses cannot
be scored unless these missing values are imputed. In contrast, the estimation
framework of the IRT models makes it straightforward to analyze items that
have random missing data. IRT can still calibrate items and score subjects by
using all the available information based on the likelihood; the likelihood-based
methods are implemented in the IRT procedure.

For these reasons we used IRT to evaluate item quality by performing item analysis
as shown in Table |3, and by constructing item response curves (IRCs) as shown in
Figure

For most of the questions, the IRC demonstrates the desired correlation between
conceptual knowledge and item performance. Student ability is measured by the sum of
the scores of the ten concept inventory questions. For most of the questions, as student
ability increases, the probability to solve the question correctly increases as well. We
found that Question 4 did not show the desired behavior since student performance
on the question did not vary according to student performance on the exam. This is
why this question also has a low discrimination index.

Based on the findings from the first iteration, in the second CI version, we dropped
Question 3. Based on our investigation of previous recursion pre-tests, we determined
that students can easily spot infinite recursion using their prior knowledge. Depending
on expert feedback, we may also drop the items whose discrimination index is less

10



Table 3. Item Analysis for the first draft CI

Question | Difficulty Index | Discrimination Index
item |1 56.52% 31.06%
item |2 59.48% 23.51%
item |3 95% 15.79%
item [4 91.3% -4.8%
item [5 91.3% 47.19%
item [6 62.32% 42.05%
item |7 91.23% 58.28%
item |8 92.75% 54.39%
item (9 60.87% 22.67%
item [10[ | 90.23% 63.6%
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Figure 1. Item response curve for all the items in the first iteration of the CI. The ability on the x-axis of
the IRCs refers to student performance.
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than 30% (Questions 4 and 9). Since Question 10 is a writing question, we changed
it to make it a little harder (e.g., ask the students to implement a recursive function
to find the largest element in an array, or to search for a given number in an array).
The second iteration CI questions can be found in along with the detailed rubrics
and associated misconception or difficulty indicated by each possible answer. Table
shows a summary of misconceptions and difficulties associated with each question.

Table 4. Misconceptions and Questions Matrix for the Second Iteration of the CI
Misconception Q11 Q2| Q3| Q4| Q5| Q6
BFneverExecute| X
BFexecuteBeforel X
RCwrite] X | X
RCnoReturnRequired] X
RCreturnlsRequired X X
BCbeforeRecursiveCase| X X
BCactionReturnConstant
BCcheckAganist Constant
BCwrite|
BCevaluation
(zlobal Variab e|

| >

>[4

| >
| >4

>
slkalke

5.2.2.  Second Administration

In Fall 2015 we administered the second iteration of the CI. We found that all the
candidate answers in the questions rubric were given by the students. We did not find
any answers for any of the questions that were not covered by the rubrics. We looked
at each of the six CI questions for all of the 111 students. We then counted the number
of student answers that expresses each misconception. Table [f] shows the percentage
of Fall 2015 students who appear to hold each misconception.

Table 5. The percentage of students holding each Misconception based on the second CI administration

Misconception Percentage
BFneverExecute] 27.93%
BFexecuteBefore] 9.5%
RCwrite 30%
RCnoReturnRequired] 20%
RCreturnlsRequired 23%

BCbeforeRecursiveCase| 15%
BCactionReturnConstant| | 6%
BCcheckAganistConstant| | 23%

BCwrite| 42%
BCevaluation 18%
GlobalVariab e| 15%

We also evaluated the CI by performing item analysis in Table [6] and constructing
Item response curves (IRCs) in Figure [2l We can see from the IRC that most of
the questions except Question 5 demonstrated the desired correlation between the
conceptual knowledge and item performance. For all the questions, as the student
ability increases, the probability to solve the question correctly increases as well. We

12
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Figure 2. Item response curve for all the items in the second iteration of the CI

found Question 5 did not show the a good behavior as other questions, it did not show
as sharp difference in the probability depending on the student ability. We will think
about how Question 5 can be modified and will ask the experts about their opinion
on how to modify this question. It could be that the misconceptions tested by this
question is not widely held by students.

Table 6. Item Analysis for the second draft CI

Question Difficulty Index | Discrimination
Index

item [1] 34.45% 49.16%

item |2 69.13% 49.80%

item (3 63.35% 78.23%

item [4 80.21% 43.45%

item |5 58.64% 25.18%

item [6 56.24% 60.23%

5.2.8. Can One Misconception Hide Another?

As part of validating our CI, we are interested in answering the question: Can one mis-
conception hide another? In other words, if a student solved a question with a certain
answer such that we believe that this student holds the misconception corresponding
to this answer on the rubric, can he also have other misconception that we cannot de-
tect because of the first one? Since not all of the misconceptions are covered by more
than one item, if a student did not show a certain misconception on a certain question,
then we need to be sure that this is not because another misconception is hiding the
first. We have designed our rubrics so that each possible answer covered by the rubric
is mapped to a misconception(s). For the most part, the possible misconceptions that
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can relate to a given problem are also associated with separate answers in the rubric,
which minimizes the chances that one misconception is hiding another covered by the
same question. The rubrics are presented in[A] However, to answer this question more
accurately, the concept inventory could be expanded to have more questions so that a
misconception is covered by more than one question. This will require a test that needs
more time. That in turn makes administering the concept inventory harder because
instructors will only devote limited time to exams.

5.2.4. FExpert Content Validity

In Fall 2015, in order to check content validity of the second draft of the CI, we collected
feedback from experts. We choose experts who had at least one year experience in
teaching recursion. On individual items the experts were asked to:

(1) Answer the CI.

(2) Decide whether the item reflects basic recursion concepts that students should
know after completing a CS2 level course.

(3) Rate the quality of the question.

Finally, the experts were asked to provide their opinions about the CI as a whole.
The experts were asked to:

(1) Decide if the CI as a whole reflects basic recursion knowledge after a CS2 level
course

(2) Comment on the topic coverage, and

(3) Indicate how confident they would be that a student who performed well on the
CI will perform well in basic recursion in a CS2 level course.

We received 6 responses from the experts contacted. All the experts agreed that
the concept inventory does a good job to identify the student misconceptions on basic
recursion. Three experts suggested that Question 6, the writing question, should be
clarified more. They suggested to provide the function signature at least. One expert
noted that the programming language that is used to teach recursion may have an effect
on the rubrics that we designed. He noted that for Scala, some of the candidate answers
in the rubrics may not fit the targeted misconception. Another expert suggested to
have more questions covering the same misconceptions. As we have discussed earlier,
adding more questions to the CI increases resistance from instructors to use it. One
expert asked why we do not include misconceptions or questions related to multiple
recursive functions. Our response is that we consider multiple recursive calls a topic
for an advanced recursion concept inventory, not a basic recursion concept inventory.
Two experts suggested that we look at student answers to the CI questions to see if it
is actually measuring what it is supposed to measure (validating the approach that we
have in fact taken). In conclusion, the second draft CI was accepted by the experts.

5.2.5.  Validity According to APA Standards

We used the validity guidelines in the APA standards for educational and psycho-
logical testing (American Educational Research Association, American Psychological
Association, & National Council on Measurement in Education and Joint Commit-
tee on Standards for Educational and Psychological Testing (U.S.), [2014)) to evaluate
how well our Recursion CI adheres to those standards. The following guidelines are
applicable, and we provide a justification of adherence for each one.
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(1)

A rationale should be presented for each recommended interpretation and use of
test scores, together with a comprehensive summary of the evidence and theory
bearing on the intended use or interpretation.

The Recursion CI was developed using up-to-date analysis of previous test

questions on recursion, comprehensive analysis of the literature on recursion
misconceptions, expert interviews and student interviews, and an analysis of
8000 student responses for recursion questions.
The test developer should set forth clearly how test scores are intended to be
interpreted and used. The population(s) for which a test is appropriate should
be clearly delimited, and the construct that the test is intended to assess should
be clearly described.

We designed a rubric for all possible answers to each question. We used binary

(correct/incorrect) grading to grade the CIL.
If validity for some common or likely interpretation has not been investigated, or
if the interpretation is inconsistent with available evidence, that fact should be
made clear, and potential users should be cautioned about making unsupported
interpretations.

It is made clear that the test can be generalized only to be used for C-like
languages (such as Java) at the CS2 course level.

If a test is used in a way that has not been validated, it is incumbent on the user
to justify the new use, collecting new evidence if necessary.

We are still working on extending the test to other programming languages.
The composition of any sample of examinees from which validity evidence is
obtained should be described in as much detail as is practical, including major
relevant sociodemographic and developmental characteristics.

This information is described in detail in this paper.

When a validation rests in part on the opinion or decisions of expert judges,
observers, or raters, procedures for selecting such experts and for eliciting judg-
ments or ratings should be fully described. The qualifications, and experience, of
the judges should be presented. The description of procedures should include any
training and instructions provided, should indicate whether participants reached
their decisions independently, and should report the level of agreement reached.
If participants interacted with one another or exchanged information, the proce-
dures through which they may have influenced one another should be set forth.

As detailed in this paper, we use expert judges to establish the validity of the

CI. This feedback is taken into account for revisions of the CI.
When validity evidence includes statistical analyses of test results, either alone or
together with data on other variables, the conditions under which the data were
collected should be described in enough detail that users can judge the relevance
of the statistical findings to local conditions. Attention should be drawn to any
features of a validation data collection that are likely to differ from typical op-
erational testing conditions and that could plausibly influence test performance.

These details are described in this paper.

When a test use or score interpretation is recommended on the grounds that test-
ing or the testing program per se will result in some indirect benefit in addition
to the utility of information from the test scores themselves, the rationale for
anticipating the indirect benefit should be made explicit. Logical or theoretical
arguments and empirical evidence for the indirect benefit should be provided.
Due weight should be given to any contradictory findings suggesting important
indirect outcomes other than those predicted.
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6.

We do not generally claim that there are indirect benefits of using our CI aside
from the purposes stated in this paper: As a test of the students, and as data
for evaluating the merits of various way to teach recursion.

Evidence-Centered Assessment Design for the Recursion CI

Evidence-centered design (ECD) is a framework that provides a more formal under-
standing for procedures that we have followed (Mislevy & Haertel, [2006). ECD or-
ganizes the work of assessment design and implementation in terms of layers. In this
section we discuss how the process of creating the recursion CI can be couched in
terms of ECD layers.

(1)

Domain Analysis: Gather substantive information about the domain of inter-
est that has direct implications for assessment; how knowledge is constructed,
acquired, used, and communicated. We performed the following steps for our
domain analysis:

e Review the literature for previous research done to find misconceptions
about recursion.

e Interview students to learn more about their misconceptions. The inter-
views were audio recorded. The student was given an exam on recursion
and was asked to think aloud while solving the exam questions. Many mis-
conceptions were made clear in this way.

e Interviews with instructors who have been teaching recursion to understand
common misconceptions that students are observed to hold on recursion.

e Instructor surveys for the instructors that couldn’t participate in the inter-
views. The surveys had the same questions that were asked of instructors
during the interview, in addition to questions about the amount of time
dedicated for recursion in class and outside of class.

e Analysis of 8000 student answers on recursion exam questions.

Domain Modeling: express assessment in narrative form based on domain anal-
ysis. For the recursion CI we can express it as: We need to evaluate student
understanding of recursion and test their knowledge with regards to recursion
misconceptions.

Conceptual Assessment Framework: express assessment argument in structures
and specifications for tasks and tests, evaluation procedures, measurement mod-
els. The recursion CI was given as a part of a mid-term exam. It is composed of
few (6 to 8) questions. All of the questions are tracing questions, except for one
which asks students to write a complete recursive function to accomplish a cer-
tain task. Our target students should have studied basic recursion in a CS2-level
course.

Assessment implementation: Implement assessment, including presentation-
ready tasks and calibrated measurement models. Recursion concept inventory
questions are shown in Appendix A, along with the rubric for each question. For
each question, the rubric shows all plausible answers for that questions, based
on extensive experience with student responses. The rubrics were built through
the manual analysis of the 8000 answers to recursion questions. The few answers
given on the first administration that were not covered in rubric were added
prior to the second administration. We expect that instructors will use a binary
grading system for each question.
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(5) Assessment Delivery: Coordinate interactions of students and tasks: task-and
test-level scoring; reporting. Renderings of materials; numerical and graphical
summaries for individual and groups; Graphical summaries. We present tables
laying out how each question, response, and misconception relate to each other.
In Section [5], for each recursion CI administration, we show the difficulty index
(which is equivalent to the mean grade of the question). We also show a graphical
representation of the item response analysis of each question. For each miscon-
ception, We show the percentage of the answers which had a this misconception.

7. Conclusion

This paper presents our initial efforts to define a collection of misconceptions and
difficulties encountered by students when learning introductory recursion, as presented
in a typical CS2 course. We have presented first and second iterations of a draft concept
inventory in the form of a series of questions, with the question rubric tagged to a
specific list of misconceptions and difficulties.

This initial effort should be continued by giving the CI to more students in differ-
ent institutions and asking more experts to evaluate the CI. The reliability and the
validity of the CI should be measured each time the CI is administrated, to confirm
that the developed recursion CI measures students’ misconceptions on basic recursion.
This recursion concept inventory is meant to measure student understanding of basic
recursion, regardless of the instruction method used. We have in fact continued ad-
ministering the CI in more courses and at more Universities. The basic recursion CI
is now available in two programming languages, C and Java. Efforts will be made in
the future to extend it to other programming languages in order for the recursion CI
to be more generalized.
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Appendix A. CI Questions and Rubrics

A.1. First iteration CI Questions

A.1.0.1. Backward Flow.
1 Given the following code:

int function(int y) {
if (y == 1)
return 5;
else {
function(y - 1);
y=y+4
return 83;
}
}

What will be returned when function(2) is executed? Write a number, or write
“infinite recursion” if you think that this call will lead to infinite recursion.

Table Al. Question item [I] Rubric

Answer Misconception

83 Correct

5 BFneverExecute|

6 RCnoReturnRequired|
Infinite recursion BFexecuteBefore|
Other ?
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2 Consider the following function.

void PrintArray(int[] A, int n) {
if (n > 0) {
PrintArray(A, n - 1);
System.out.print(A[n]);
}
}

What will be printed when PrintArray (A, 5) is executed, with array A ini-
tialized so that position A[i] stores value i? Write a sequence of numbers that
will be printed, or write “nothing” if you think that it will print nothing. Write
“infinite recursion” if you think that the call will lead to infinite recursion.

Table A2. Question item [2] Rubric

Answer Misconception

12345 Correct

1234 BCevaluation

01234 BCevaluation

012345 BCevaluation

54321 BFexecuteBefore

543210 BFexecuteBeforel and |BCevaluation
4321 BFexecuteBefore and |BCevaluation!
Nothing BFneverExecute|

Infinite recursion | [BCevaluation| or ?

Other ?

A.1.0.2. Infinite recursion.

(3) Consider the following function.

int mystery(int x) {

if (x > 0)
return 8;
else

return 2 + mystery(x - 1);

¥

What value will be returned when mystery(0) is executed? Write a number, or
write “infinite recursion” if you think that the call will lead to infinite recursion.

Table A3. Question item [3] Rubric.

Answer Misconception
Infinite recursion Correct

8 InﬁniteExecuti0n|
2 or 10, 12, 14, etc. | [BCevaluation|
Other ?
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A.1.0.3. Recursive call.

(4) The following code leads to infinite recursion when called as function(3, 2):

int function(int x, int y) {

1

2 if (x ==y)
3 return y;
4 else
5

6

return function(x + 1, y);

}

Pick ONE line that you think is the cause of the infinite recursion and write

a replacement, so that this replacement will fix the infinite recursion.

Table A4. Question item [4 Rubric.

Answer Misconception

Line 5: return function(x -1, y) Correct

Line2:x!=y Correct

Line 5: return function(x , y+1) Correct

Line 5: function(x - 1 , y) [RCnoReturnRequired|

Line 2: x > any positive number
or x == any number >= 3

Correct but may be

BCactionReturnConstant|

Line 2: x < any positive number

BCwrite| and

BCactionReturnConstant|
Line 5: function(x + any positive number) | [RCwrite]
Line 5: return y- any positive number BCevaluation|

Line 5: return any constant value BCcheckAganistCOnstant|
Other ?
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(5) Given the following incomplete code:

int SumTo(int k)
{
if (k > 0)
// missing line;
else
return O;

}

Write something to replace the line // missing line so that when given a
number k, SumTo will return a cumulative sum of the values from 1 to k. For
example, 15 will be returned when SumTo (5) is called, 21 when when SumTo (6)

is called, and so on.

Table A5. Question item [5] Rubric.

Answer Misconception

return k + SumTo(k - 1) Correct

return SumTo(k - 1) RCwrite

return k + SumTo(k + 1) RCwrite

k + SumTo(k - 1) RCnoReturnRequired

k + SumTo(k + 1)

RCnoReturnRequired| and |Rerite|

Any answer that has no recursive call

BCbeforeRecursiveCase|

Other

?
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(6) The following incomplete code is meant to print the numbers going from y down
to x, where x < y. For example, if CountDown (3, 7) is called then the following
should be printed: 76543

void CountDown(int x, int y) {
if (x <= y) {
System.out.print(y);
// missing recursive call
}
}

Write a recursive call that should replace // missing recursive call.

Table A6. Question item @ Rubric.
Answer Misconception

CountDown(x , y-1) Correct
CountDown(x , y+1) [RCwritel and [BCevalua-|

tion

return CountDown(x , y- | [RCreturnlsRequired|

1)
return CountDown(x , | [RCreturnIsRequired| and
y+1) and [BCevalual

tion

Any answer that has no | [BCbeforeRecursiveCase|

recursive call
Other ?
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A.1.0.4. Base case.
(7) Given the following two methods:

int functionl(int x, int y) {
if (x == 1)
return y;
else
return functionl(x-1, y) + y;

¥

int function2(int x, int y) {
if (x > 1)
return function2(x-1, y) + y;
else
return y;

What values are returned by the calls function1(2,3) and function2(2,3)?
Write a number for each return value, or write “infinite recursion” if you think
either will eventually lead to infinite recursion.

Table A7. Question item [7] Rubric

Answer Misconception
6 and 6 Correct
Two different values BCbeforeRecursiveCase|

The same value, but not 6 | [BCevaluation|or 7
Infinite Recursion for both | [BCevaluation| or ?
Other ?
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(8) Given the following incomplete recursive method:

int Sum(int a, int b) {
if ( //Missing Case// )
//Missing Action//
else
return Sum(a, b-1)+ b;

Write something to replace //Missing Case// and //Missing Action// so
that when this recursive function is passed 2 numbers, it will return the sum of
all the integers between them. For example, given 2 and 5, add 2 + 3 + 4 + 5
and return 14. If the two numbers are equal, then return that value.

Table A8. Question item [§] Rubric.

Answer Misconception

a==Db and return a Correct

a==Db and return b Correct

a—=Db and return constant [BCactionReturnConstant|

A condition like a==constant or
b==constant

and return a BCwrite and [BCcheckAganist Constant]|
Other ?
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A.1.0.5. Variables updating.

(9) The following function is intended to find the minimum value in an array.

int recursiveMin(int[] array, int index) {
int min = arrayl[0];
if (index == 0)
return min;
else {
if (array[index] < min)
min = array[index];
return recursiveMin(array, index-1);
}
}

What will be returned by recursiveMin when the following lines are exe-
cuted?

int [] array = {10, 20, 2, 30, 8};
int var= recursiveMin(array, array.length);

Write a number, or write “infinite recursion” if you think that the call will
lead to infinite recursion.

Table A9. Question item [J] Rubric

Answer Misconception
10 Correct

2 |GlobalVariable|
8 ?

Infinite Recursion | 7

Other ?

A.1.0.6. Writing Question.

(10) Write a recursive function to compute x to the power y. Assumes that y is positive
or zero and both x any y are integers.
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A.2. Second Iteration CI Questions
1 Given the following code:

int function(int y) {
if (y == 1)
return 5;
else {
function(y - 1);
y=y+1
return 83;
}
+

What will be returned when function(2) is executed? Write a number, or write
“infinite recursion” if you think that this call will lead to infinite recursion.

Table A10. Question item [I] Rubric

Answer Misconception

83 Correct

5 BF neverExecute|

6 RCnoReturnRequired|
Infinite recursion BFexecuteBeforeI

583 BCbeforeRecursiveCase|
Other

2 Given the following incomplete code:

int SumTo(int k)
{
if (k > 0)
// missing line;
else
return O;

}

Write something to replace the line // missing line so that when given a
number k, SumTo will return a cumulative sum of the values from 1 to k. For
example, 15 will be returned when SumTo (5) is called, 21 when when SumTo (6)
is called, and so on.

Table A1l. Question item [2] Rubric.

Answer Misconception

return k + SumTo(k - 1) Correct

return SumTo(k - 1) RCwrite

return k + SumTo(k + 1) RCwrite

k + SumTo(k - 1) RCnoReturnRequired

k + SumTo(k + 1) RCnoReturnRequired| and [RCwrite|
Any answer that has no recursive call BCbeforeRecursiveCase|

Other ?
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3 The following incomplete code is meant to print the numbers going from y down
to x, where x < y. For example, if CountDown (3, 7) is called then the following

should be printed: 76543

void CountDown(int x, int y) {
if (x <= y) {
System.out.print(y);
// missing recursive call

3
3

Write a recursive call that should replace // missing recursive call.

Table A12. Question item [3] Rubric.

Answer

Misconception

CountDown(x , y-1)

Correct

CountDown(x , y+1) RCwrite] and [BCevaluation|

return CountDown(x , y-1) RCreturnIsRequired

return CountDown(x , y+1) RCreturnlsRequired| and [RCwrite] and
|IBCevaluation|

Other ?

(4) Given the following two methods:

int functionl(int x, int y) {
if (x == 1)
return y;
else
return functionl(x-1, y) + y;

}

int function2(int x, int y) {
if (x> 1)
return function2(x-1, y) + y;
else
return y;

What values are returned by the calls function1(2,3) and function2(2,3)7?
Write a number for each return value, or write “infinite recursion” if you think
either will eventually lead to infinite recursion.

Table A13. Question item [@] Rubric

Answer Misconception
6 and 6 Correct
Two different values BCbeforeRecursiveCase|

The same value, but not 6 | |BCevaluation| or ?

Infinite Recursion for both | [BCevaluation| or ?

Other ?
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(5) Given the following incomplete recursive method:

int Sum(int a, int b) {
if ( //Missing Case// )
//Missing Action//
else
return Sum(a, b-1)+ b;

Write something to replace //Missing Case// and //Missing Action// so
that when this recursive function is passed 2 numbers, it will return the sum of
all the integers between them. For example, given 2 and 5, add 2 + 3 + 4 + 5
and return 14. If the two numbers are equal, then return that value.

Table A14. Question item [5] Rubric.

Answer Misconception

a==Db and return a Correct

a==Db and return b Correct

a—=Db and return constant [BCactionReturnConstant|

A condition like a==constant or
b==constant

and return a BCwrite and [BCcheckAganist Constant]|
a==b and return a-+b ?
Other ?

(6) Write a recursive function to search for a given value in a given array.
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