
An Approach to User Interactions with IoT-enabled
Spaces

Denis Gračanin∗, Mohamed Handosa∗, Hicham G. Elmongui† and Krešimir Matković‡
∗Department of Computer Science,

Virginia Tech, Blacksburg, VA, USA
Email: gracanin@vt.edu, handosa@vt.edu

†Department of Computer and Systems Engineering,
Alexandria University, Alexandria, Egypt

Email: elmongui@alexu.edu.eg
‡VRVis Research Centre,

Vienna, Austria
Email: matkovic@vrvis.at

Abstract—IoT-enabled built environments have potential to
improve the lives of individuals, groups, and the broader com-
munity. Internet of Things (IoT), a collection of networked
and interacting embedded devices, provides the necessary in-
frastructure and enabling technologies to design, develop and
deploy smart built environments. We describe an approach
to supporting user interaction with IoT-enabled smart built
environments. This approach takes advantages of affordances and
embodied cognition in a physical space to model user interaction
with built spaces. The corresponding implementation leverages
standard protocols (MQTT) and IoT-Lite ontology to represent
IoT resources, entities and services. A proof-of-concept light-
control application demonstrates the approach.

Keywords—Internet of Things, human computer interaction,
smart homes.

I. INTRODUCTION

A smart environment is a physical space enriched with
smart objects that work continuously to make residents lives
more comfortable [1]. In contrast to the rapid development
in equipment and capabilities of smart environments, less
attention has been paid to the development of user interfaces
and user interaction techniques that can present those capabil-
ities to the users in an intuitive and comprehensive manner.
Providing smart objects without the appropriate user interfaces
can complicate user experience rather than simplifying it.
Therefore, supporting convenient user interfaces is a key for
the success and wide adoption of smart environments.

Smart built environments incorporate sensors and actuators
into the built space to provide new functionalities or enhance
the current ones. Sensors collect data about the occupants and
the current context, which allows for recommending actions
to occupants or performing them autonomously. Actuators can
change the physical state of the built space on behalf of the
occupants. Applying the Internet of Things (IoT) technolo-
gies in built environments to create smart built environments
involves the transformation of traditional physical objects
into smart objects (or things) by integrating processing and
communication capabilities as well as sensors and/or actuators.

Supporting a seamless interaction between (smart) things
and occupants is crucial for a successful application of the
IoT technologies in built environments. Unlike traditional
computing devices, things are usually resource-limited and
they lack input and output peripherals. Therefore, the inter-
action between users and things usually take place through
an intermediary computing devices (e.g., smartphones). The
role of the intermediary computing device is to provide a user
with an interface through which the user can send commands
to different things and receive feedback from them.

Relying on the intermediary computing device to provide
a Graphical User Interface (GUI) for user interactions has
several drawbacks. First, no interaction can take place without
the intermediary device. Second, mapping things located in a
3D space into a 2D GUI can be tricky for both developers and
users. Third, the intermediary device can act as an explicit
barrier between users and things. Consequently, supporting
other interaction techniques such as voice based, gesture
based, and augmented reality based can address some of the
limitations associated with the traditional GUI. In fact, there
is no ultimate interaction technique that is best for every
scenario. Therefore, smart environments should support multi-
modal interaction, where the users have the flexibility to select
the best interaction technique for a given scenario.

Providing user interfaces for different things usually re-
quires developing different applications, where each applica-
tion is tailored for a specific set of things. The developer needs
to be aware of the peculiarities and functionalities provided by
each of those things before being able to build the interaction
application. On the user side, interacting with different things
may require users to install and use different applications.
Installing numerous applications and switching between them
to interact with different things can be frustrating to the users.
Moreover, users are required to have prior knowledge about
the available things and the corresponding applications that
they need to install before being able to interact with these
things. Although this might be acceptable for a resident, it
can be overwhelming for visitors.

14th International Conference on Telecommunications - ConTEL 2017
ISBN: 978-953-184-224-2, June 28-30, 2017, Zagreb, Croatia 139



Ideally, users should be able to interact with a smart built
space as they enter that space with minimum requirements
at the user side. Users should not be assumed to have prior
knowledge about the space or required to install and use dif-
ferent applications to interact with different spaces or things.
In order to achieve that, we need to address a number of
questions. First, how will users discover the available things?
Second, how will users know about the different supported
interaction techniques? Third, how to present a user interface
to the users?

In this paper, we introduce a human-centered user interac-
tion framework that addresses the questions mentioned above
and achieves two main goals. The first goal is to provide users
with intuitive and multi-modal interactions with a built space.
The second goal is to avoid the need for different applications
to interact with different smart spaces. Consequently, GUIs
hosted on intermediary computing devices can be avoided
whenever possible in favor of direct interaction.

II. RELATED WORK

The “smart” house, or “home of the future”, augments a
traditional home by adapting new technology is adapted into
the existing patterns of use [2]. Harrison and Dourish empha-
size the difference between space and place, defining place as
space with added socio-cultural understandings. They argue
that “place, not space, frames appropriate behaviour” [3].

Aipperspach et al. discuss the dangers of introducing infor-
mation technology into the home without considering potential
detrimental effects on its inhabitants [4]. Nissenbaum intro-
duces the concept of contextual integrity to address concerns
about the effects of information technology on privacy from
the perspective of the law [5].

Crabtree and Rodden study domestic routines as related to
communication and collaboration [2]. They introduce three
major concepts: ecological habitats as places where communi-
cation media live, activity centers as places where media are
produced and consumed, and coordinate displays as places
where media are made available to coordinate activities.

A. Internet of Things
The IoT involves heterogeneous devices provided by differ-

ent vendors. Those devices have variations in their capabilities
and may use different standards. Therefore, there is a need for
an architecture that can integrate such a variety of devices
and allow cooperation between them. Object virtualization
can provide a standard interface that exposes the features
and functionalities of objects regardless of their technical
implementation details.

The IoT architecture and the corresponding implementa-
tion [6], [7] differ form the traditional network architecture.
A large number of devices have to be connected, most of
them with limited computing and networking capabilities. The
IoT devices will be deployed in various contexts [8], in-
cluding wearable devices, house appliances/sensors, embedded
devices/smartphones, manufacturing plants and environmental
sensors. They can span large urban areas to support “smart
cities” [9].

B. Middleware

Previous systems involving sensors and actuators were
mostly closed systems operated by a single organization to
serve a predefined specific goal. Thus, applications for such
systems were relatively simple and direct interaction between
applications and devices was common. On the other hand,
the large scale of IoT systems raises the need for a middle-
ware that can provide the interoperability between different
devices and applications. A middleware acts as an intermediary
that abstracts and standardizes the interaction between things
themselves and provides a unified interface for applications
and users that hides the specific peculiarities of those things.
Several Architectures for the IoT have been proposed and
the majority of them follow a Service Oriented Architecture
(SOA) approach.

Atzori et al. [10] defined a middleware of three layers:
object abstraction, service management, and service compo-
sition, where the management of trust, privacy, and security
is the responsibility of all layers. The object abstraction layer
exposes device functionalities through a standard web service
interface and translates messages into device-specific commu-
nication commands. The service management layer contains a
service repository of services associated with each object. The
service composition layer allows for creating complex services
by composing services provided by the service management
layer and allows application to interact with objects through
the provided services.

Domingo [11] proposed an IoT architecture composed of
three layers: perception, network, and applications layer. The
main function of the perception layer is to identify objects
and gather information. The network layer is responsible for
transmitting information obtained from the perception layer.
The application layer consists of a set of intelligent solution
that meets user needs.

C. Architecture

Jia et al. [12] divided the IoT system architecture into three
layers: the perception layer, the network (or transport) layer,
and the service (or application) layer. The perception layer is
concerned with perceiving and collecting information about
the physical world. The network layer provides transparent
data transmission capability as well as an efficient, reliable,
trusted network infrastructure platform to the upper layer.
The service layer includes two sublayers: data management
and application service. The data management sublayer is
concerned with processing complex data as well as pro-
viding directory service and Quality of Service (QoS). The
application service sublayer transforms information to content
presented to applications and end users.

Xu et al. [13] proposed an IoT architecture composed of
four layers: the sensing layer, the networking layer, the service
layer, and the interface layer. The sensing layer integrates
with hardware to sense and control the physical environment.
The networking layer provides basic network support and data
transfer over wireless and wired networks. The service layer

D. Gracanin, M. Handosa, H. G. Elmangoui, K. Matkovic

ConTEL 2017, ISBN: 978-953-184-224-2140



creates and manages services. The interface layer provides
interaction methods to the users and the applications.

Designing an architecture for the IoT is a big challenge that
requires supporting many features including interoperability,
openness, scalability, and robustness. The IoT will incorporate
billions of heterogeneous devices connected through various
types of networks with a variety of communication technolo-
gies and protocols. Therefore, the IoT architecture should
support interoperability between the underlying technologies
and provide users and applications with transparent services.

In order to support openness, the architecture needs to
provide unified interfaces and a common language to exchange
information across different IoT systems [14]. As the number
of interconnected things increases scalability issues may arise,
which may cause performance degradation. Supporting such
a large scale of things in terms of naming, communication,
device and service discovery, access authentication, protection,
and control is essential for a successful IoT architecture. The
openness and scale of the IoT implies high dynamicity, where
things get connected on a continual basis while others may
get disconnected probably due to failure. The architecture
can support fault tolerance by replicating critical services and
providing failure detection and recovery mechanisms.

Over time, the IoT systems may suffer from deterioration.
Things may become out of synchronization due to clock drifts,
which may result in application failure. Location information
may become inaccurate due to unexpected movement of
things, which may result in incorrect inferences. Performance
of actuators may degrade due to physical wear and tear, which
may result in severe safety problems in some applications.
In order to maintain a robust system, the architecture must
provide self-healing mechanisms such as resynchronization of
clocks, relocation of devices, and recalibration of sensors and
actuators [14].

Integrating different IoT systems with each other and with
existing legacy systems is another challenge. Although the
sharing of IoT resources can significantly reduce the de-
ployment cost, different systems may have conflicting needs
and/or goals [14]. Solving such conflicts is crucial for a
seamless integration between systems. The IoT architecture
should carefully define the policies for system integration and
resource sharing in order to ensure the correct operation of
interacting IoT systems.

The evaluation of IoT and distributed sensor systems in-
cludes real-world testing, miniature prototypes and software
simulations [15]. Sensor device emulators could be used to
fully replicate the behavior of the deployed sensors. While
software simulations are more convenient compared to the
real-world testing, most of them focus on the low-level net-
working aspects, with well-defined topologies and arrange-
ments of objects. However, recent efforts are focusing on effi-
cient simulation methodologies for large-scale IoT systems in
urban environments from an application-layer perspective [16].

There are increasing efforts to develop the relevant the-
oretical frameworks, practical approaches, and methodolo-
gies [17]. Distributed test system frameworks for open-source

IoT software have been proposed [18] to support continuous
integration techniques and a permanent distributed plugtest for
network interoperability testing. Since one of the key function
of IoT systems is data collection and processing, it is important
to understand how data analytics solution will work for IoT
systems. A benchmark toolkits, such as IoTAbench [19],
support testing of IoT use cases.

Although GUIs are widely adopted, other user interfaces
such as gesture-based and voice-based interfaces has become
more prevalent in the recent years due to the combination
of improvements in computing power and access to accurate
sensors [20]. Those interfaces are not supposed to replace GUI
completely. However, in certain situations it may make more
sense to use them rather than a GUI because they allow for
direct interaction with the system with no need for a hands-on
middle device like a mouse or a keyboard.

Petersen et al. [21] described a user study showing that
80% of the participants preferred to use gestures over more
traditional methods such as GUIs. The participants had no
problem completing their tasks after the first or second try.

III. USER INTERACTIONS WITH IOT-ENABLED SPACES

Providing a customized and adaptive user interface and
interactions can improve the user’s performance [22]. In most
cases, the customization was based on visually altering the
user interface or reconfiguring the input devices based on
the user preference. However, we need to move from typical
human-computer interaction to human-environment interaction
in a smart built space populated by smart things. The users
must be able to seamlessly discover the available things,
the corresponding supported interaction techniques and user
interfaces.

The proposed framework incorporates the front-end clients
and the back-end server, as shown in Figure 1. This separation
allows for using the same back-end server with different
front-ends implementing different interaction techniques. Sev-
eral front-end clients implementing similar and/or different
interaction techniques can communicate simultaneously with
the back-end server. A front-end client takes the form of
an application running on a computing device leveraging its
resources to provide the user interface. For instance, a front-
end client running on a smartphone can provide a graphical
or a voice-based user interface.

The front-end client can rely on its server discoverer module
to discover and connect to the back-end server without user
intervention. Thus, the user is not required to have any prior
knowledge about the back-end server. Afterwards, the front-
end client communicates with the back-end server to obtain a
uniform description of the user interface.

This description is represented using a platform-agnostic
language that is independent of the intended interaction tech-
nique and the capabilities of the devices involved in the
interaction. The user interface description interpreter module
is responsible for generating a user interface that leverages
the interaction device capabilities based on the description
obtained from the back-end server. The user observer module

An Approach to User Interactions with IoT-enabled Spaces

ConTEL 2017, ISBN: 978-953-184-224-2 141



Fig. 1. A human-centered interaction framework for smart built environments.

is responsible for collecting data about the user either through
the user interface (e.g. user identity if the interface requires
authentication and commands issued by the user) or via the
device capabilities (e.g. user location if the device has tracking
capability). The information collected by the user observer
is sent to the back-end server, where it is stored in the
user/occupant repository.

The back-end server keeps track of all things in the built
space. Information about newly installed things is added to
the thing repository through the thing registration service. The
thing repository has a record per thing storing information
about its characteristics and functionalities. The data collected
by things (e.g. sensory data streams) are monitored by the
thing observer, which stores them in the data repository. The
occupant observer collects data about all occupants, both users
and non-users, using detection, identification, and tracking
techniques (e.g. occupancy sensors, face recognition, motion
tracking). The occupant observer may collect different types
of data ranging from the number of occupants in a given space
to the current activity of specific occupants.

The UI description generator is responsible for generating
a platform-independent description of the user interface. This
can take the form of listing things with potential interest to
the user along with information about their characteristics and
functionalities as well as a logical structure that relate those
things to the current context. The user interface generator
depends on the thing repository to obtain information about
things and on the context awareness module to obtain rules
for filtering and ranking those things.

The context awareness component leverages the data avail-

able from the thing repository, data repository, and user
profiles to facilitate the generation of a user interface that is
tailored to the current needs of the user. For example, the
thing repository may provide information about the locations
of different light sources, the data repository can provide data
about the current state of those lights, and the user profiles
can provide information about the current location of the
user or even the current user activity. The context awareness
module should leverage these information sources to provide
the user interface generator with guidance. For example, if a
user enters a space and the air conditioning at that space was
turned off to save energy, the user interface should include
and perhaps promote the air conditioning controls to meet the
user’s expected needs.

Ideally, a smart environment should take over and meet the
needs of occupants with autonomous actions. However, this
is only possible if the environment is aware of all the factors
affecting all the activities and decisions of all occupants, which
is usually not the case. Therefore, a user interface is required
through which a user can control the space to meet the needs
of the task at hand or override any autonomous decisions that
conflict with those needs.

A. Framework Implementation

A front-end client can discover the back-end server and
connect to it through the server discoverer module. One simple
implementation of this module is to broadcast a query message
over the entire network to a predefined server discovery port.
When the back-end server receives that query, it replies with
the connection information that the client needs to use in order

D. Gracanin, M. Handosa, H. G. Elmangoui, K. Matkovic

ConTEL 2017, ISBN: 978-953-184-224-2142



Fig. 2. FutureHAUS kitchen and living room modules.

to connect to the server. Thus, no prior information about the
server is needed except for the server discovery port.

Things communicate with both the user interface and the
thing observer using a lightweight communication protocol
such as the Message Queue Telemetry Transport (MQTT)
protocol [23] or the Constrained Application (CoAP) protocol.
The thing registration service can provide an Application
Programming Interface (API) using, Representational State
Transfer (REST) or Simple Object Access Protocol (SOAP)
that things can use to register their characteristics and func-
tionalities [24].

The information stored in the back-end server is based
on the IoT-Lite ontology [25]. It is a lightweight ontology
that is used to represent different aspects of IoT resources,
including smart things and context information. It supports
interoperability by allowing heterogeneous platforms to use
a common vocabulary. This ontology can be extended to
represent the specific details associated with things in built
environments. An extended version of the IoT-Lite ontology
can be used as a standard data exchange format between things
and the thing registration module as well as between the user
interface description generator at the server-side and the user
interface description interpreter at the client-side. The IoT-Lite
ontology classifies IoT concepts into objects, resources, and
services and classifies IoT devices into sensing, actuating, and
tag devices. It is focused on sensing and describes coverage
as a 2D-spatial.

The thing repository includes, among others, information
about location and input/output capabilities that be used in
support of multi-modal interactions. For example, lights can
be used to provide a visual feedback (see Section IV-A).

IV. CASE STUDY

Virginia Tech’s FutureHAUS (http://www.futurehaus.tech)
is a smart home developed as a part of the ongoing efforts
to explore challenges related to creating smart built environ-
ments [26], [27] using a pre-fab delivery method. Additionally,
the advanced integrated electronics that we expect to have

Fig. 3. FutureHAUS bathroom module.

in our homes today can be immediately integrated into the
construction and assembly process.

We have constructed FutureHAUS prototype (Figures 2
and 3) using modular “cartridge” prototypes (kitchen, living
room, bathroom and bedroom) for this building process which
explores the possibilities of prefabricated architectural compo-
nents for a home. The components can be accessed and con-
trolled through a whole-house interface which manages and
monitors appliance performance and energy use. The modules
are “wired” with IoT-based devices, electronic actuators and
sensors that make using the living space easy, more accessible
and energy efficient. The modules are integrated in a single
smart space using the proposed approach (Section III) with
MQTT as the communication protocol. The goal is to integrate
smart technologies into a prefabricated system while elevating
the user’s experience of all household activities (Figure 4).

The initial idea and architectural conceptual (Figure 4 top
left) was used to create the corresponding virtual environment
model (Figure 4 center). After exploring and refining the
virtual environment model (Figure 4 bottom left) the modules
were constructed (Figure 4 bottom right and Figures 2 and 3).

Once the modules were constructed and integrated with the

Fig. 4. FutureHAUS design and development process.

An Approach to User Interactions with IoT-enabled Spaces

ConTEL 2017, ISBN: 978-953-184-224-2 143



deployed framework, the FutureHAUS became a living testbed
for studying user interactions with IoT-enabled spaces. In
addition to more common devices, such as multi-touch screens
(kitchen backsplash wall, kitchen table - Microsoft Perspective
Pixel), the testbed incudes a variety of other input devices (e.g.,
Garmin LIDAR Lite v3 [28], LeapMotion, Kinect, Amazon
Alexa/Echo, fingerprint scanner). In addition, appliances and
pieces of furniture were instrumented to create smart things.

As an illustration, the kitchen module has a set of devices
(appliances), where each device has an IoT-based controller
(Raspberry PI or Arduino) controlling a set of sensors and/or
actuators. The living room has controllable color lights and a
sofa with pressure sensors. The controllers periodically send
the sensor readings to the server and check the server for
new commands for the actuators. Applications and users can
interact with the system by querying the readings from sensors
and input devices and posting commands.

The rich ecology of smart things supports the development
of new multimodal interactions with smart built environments
and facilitates conducting user studies to evaluate different
interaction modalities. We describe one such study, a gesture
based lighting control, in more details.

A. Gesture-based Lighting Control

Lighting can play an essential role in supporting user tasks
as well as creating an ambiance. Although users may feel
excited about the supported functionality when a complex in-
door lighting system is first deployed, the lack of a convenient
interface may prevent them from taking the full advantage of
the system. For decades, traditional lighting systems allowed
users to control light bulbs using switches; flipping the switch
negates a light’s current state. Figure 5 shows an example of
a fairly complex set of light switches. However, with recent
advances in lighting technologies, a light control system can
be very complex.

The complexity of light control arises mainly from two
factors. First, the adjustable light parameters (e.g., color and
intensity) cannot be configured using traditional switches,
which implies the need for a new light control interface. Sec-
ond, there is an increased number of light sources (LED-based
lighting systems can have tens or even hundreds of individually
controllable light sources) [29]. Therefore, installing a switch

Fig. 5. A fairly complex set of light switches.

per light source is not a scalable solution. Some lighting
systems allow users to control lights using a smartphone.
However, mapping lights in a 3D space to a 2D GUI can
confuse the user, especially as the number of light sources
increases and their distribution becomes more complex.

Mrazovac et al. [30] used a sensing glove for 3D light
control. Their system allows for dimming lights as well as
switching them on/off. The glove sends accelerometer data
using a radio frequency transmitter to a remote module that
translates it into lighting commands. The system uses the
sensing glove as a remote control for a specific light source.
There is no support for selecting different light sources. Only
the intensity of the light can be controlled but not its color.

We developed an interaction technique for controlling in-
door lights [31]. The light control system was implemented on
top of the deployed framework. It is extendable and supports
multiple users to control lights using either gestures or a GUI.
Using a single Kinect sensor, the user is able to control lights
from different positions in the room while standing or sitting
down within the tracking range of the sensor. The selection
and manipulation accuracy of the proposed technique together
with the ease of use compared to other alternatives makes it
a promising lighting control technique.

Lighting control tasks can be categorized as primitive tasks,
such as turning lights on and off, or as advanced tasks,
such as programming specific times for predefined lighting
configurations. A 3D user interface for lighting control should
support primitive lighting control tasks including the selection
of one or more light sources before turning them on/off or
adjusting their color if applicable. The 3D user interface should
provide users with the feedback for their actions. The system
should anticipate for a situation where multiple users might
try to interact with the system simultaneously, in which case
the system should perform conflict resolution.

B. Implementation

The control system is designed to respond to a single user at
a time, even when several users are present. Once a user claims
control of the light control, the lights respond only to that
user until the control is released. We define a set of gestures
to represent different user commands and lights themselves
provide a visual feedback. User actions include:

Fig. 6. Left: selecting a light source. Right: The lighting control system
deployed in a living room.

D. Gracanin, M. Handosa, H. G. Elmangoui, K. Matkovic

ConTEL 2017, ISBN: 978-953-184-224-2144



Claiming control: the user raises either hand above the head
and makes a closed hand gesture. The raised hand is the
selection (painting) hand and the other hand is the coloring
hand. No other user can interact with the system until the
user releases the control.
Releasing control: the user makes an open hand gesture
using the selection hand. In addition, the control is released
automatically when the user body is no longer tracked (e.g.
the user left the room).
Selection: the user points the selection hand towards light
sources. To simplify user’s task, the system will select a light
source as long as it is within a predefined distance of the
selection beam as shown in Figure 6 left. Selected light sources
do not have to be continuous. The user can deselect light
sources by releasing control.
Switching hands: the user raises the coloring hand above
the head and makes a closed hand gesture with it before
opening the selection hand. At that point, the old coloring
hand becomes the new selection hand. Consequently, the user
can make use of both hands to select multiple light sources in
various directions.
Coloring: the system assumes three virtual sliders correspond-
ing to three color components, hue, saturation, and luminosity.
The user can change the value of a slider by closing the
coloring hand and moving it along the slider before opening
the coloring hand at the desired value. The user closes, moves,
and opens the coloring hand to catch, drag, and release the
virtual slider and sees instant feedback as the selected lights
change their color in response to the change in slider value.
The hue slider: moving the coloring hand left and right.
The saturation slider: moving the coloring hand forward and
backward. The luminosity slider: moving the coloring hand
up and down. The granularity of the hue, saturation, and
luminosity sliders can be customized.

The developed lighting control system provides two meth-
ods for controlling lights, a 2D GUI and a 3D gesture-
based UIs (Figure 1, front-end clients). The MQTT broker
facilitates communication between the UI clients and the DMX
server (Figure 1, back-end server). The 2D UI client runs on
a computing device (e.g., a smartphone) that sends control
commands to the DMX server. The 3D UI client uses a Kinect
device to capture the user’s gestures and map them to lighting
control commands sent to the DMX server.

The DMX server is responsible for translating received
commands into DMX commands before sending them to the
Digital Multiplexing (DMX) controller. The DMX controller
is a device that can control a set of light sources individually.
The MQTT broker facilitates communication between the 2D
UI client, the 3D UI client, and the DMX server. Figure 7
shows the implementation of the lighting control system on to
of the implemented framework.

C. Testing

The control system was and tested in a living room (Fig-
ure 6 right) with 36 individually controllable LED segments
mounted in the ceiling forming a rectangle with ten segments

Fig. 7. The lighting control system architecture using the proposed frame-
work.

on each of two opposite sides and eight segments of each
or the other two opposite sides. The locations of those light
segments in 3D space are fed to the system upon deployment.
The selection tolerance can be customized to adjust selection
sensitivity. The nearest light source to the selection beam is
selected if its distance from the selection beam is shorter than
the specified tolerance value.

The control system uses the lights to provide instant feed-
back to the user. A noticeable delay in response to user com-
mands can degrade the user experience. Moreover, receiving
a feedback for a previous command (e.g., change in hue)
while performing a new action (e.g., modifying luminosity)
can confuse the user. Therefore, the responsiveness of the
system is critical for system’s usability.

The system’s responsiveness is determined by the delay
(latency) between the time at which the user makes a given
gesture and the time at which the user receives a visual
feedback through the lights. Figure 8 shows six consecutive
frames from one of the captured videos. The user points to a
light source with an open hand (Figure 8a), which should not
trigger any action. The user closes hand to claim control of
the system and select the light source (Figure 8b). The user
is waiting for feedback (Figures 8c, d, e). The user receives a
visual feedback, a change in the color of the selected light
source (Figure 8f). The total system delay ranges between
100 and 167 milliseconds which makes it very responsive and
suitable for gesture based interactions.

Fig. 8. Video recording frames for selecting a light source.

An Approach to User Interactions with IoT-enabled Spaces

ConTEL 2017, ISBN: 978-953-184-224-2 145



V. CONCLUSION

We described an approach and the corresponding framework
to support user interactions with IoT-enabled spaces. The
proposed framework consists of two main parts, the front-end
clients and the back-end server, A case study, FutureHAUS
smart house was used to deploy the framework. The developed
gesture-based light control user interaction technique demon-
strates how to provide users with intuitive and multi-modal
interactions in a smart built space.

Future work will focus on refining the developed frame-
work and expanding the supported user interactions with a
smart built space. We are in process of building the next
generation FutureHAUS that will take advantage of the lessons
learned to support sustainability and comfort. The goal is to
provide seamless energy-aware and environment-aware inter-
action between occupants and virtual/physical components in
a smart built environment and detection of usage patterns and
behaviors to inform context awareness and to identify desired
comfort level and related environmental conditions.

ACKNOWLEDGMENT

This work has been partially supported by a grant from the
Virginia Tech Institute for Creativity, Art, and Technology and
by VRVis Forschungs-GmbH. The VRVis Forschungs-GmbH
is funded by COMET — Competence Centers for Excellent
Technologies (854174) by BMVIT, BMWFW, Styria, Styrian
Business Promotion Agency — SFG and Vienna Business
Agency. The COMET Programme is managed by FFG.

REFERENCES

[1] N. S. Dalton, H. Schnädelbach, M. Wiberg, and T. Varoudis, Eds.,
Architecture and Interaction: Human Computer Interaction in Space
and Place. Springer, 2016.

[2] A. Crabtree and T. Rodden, “Domestic routines and design for the
home,” Computer Supported Cooperative Work, vol. 13, no. 2, pp. 191–
220, Apr. 2004.

[3] S. Harrison and P. Dourish, “Re-place-ing space: The roles of place
and space in collaborative systems,” in Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work (CSCW ’96).
New York: ACM, 1996, pp. 67–76.

[4] R. Aipperspach, B. Hooker, and A. Woodruff, “FEATURE: The het-
erogeneous home,” interactions, vol. 16, no. 1, pp. 35–38, Jan. + Feb.
2009.

[5] H. F. Nissenbaum, “Privacy as contextual integrity,” Washington Law
Review, vol. 79, no. 1, pp. 119–158, Feb. 2004.

[6] F. daCosta, Rethinking the Internet of Things: A Scalable Approach to
Connecting Everything. Apress L. P., 2013.

[7] S. C. Mukhopadhyay, Ed., Internet of Things: Challenges and Opportu-
nities, ser. Smart Sensors, Measurement and Instrumentation. Springer,
2014, vol. 9.

[8] J. Anderson, L. Rainie, and M. Duggan, “The internet of things will
thrive by 2025,” Pew Research Center, Washington, D.C. 20036, Tech.
Rep., May 2014.

[9] R. Lea and M. Blackstock, “Smart cities: An IoT-centric approach,” in
Proceedings of the 2014 International Workshop on Web Intelligence
and Smart Sensing. New York: ACM, 2014, pp. 12:1–12:2.

[10] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[11] M. C. Domingo, “An overview of the Internet of Things for people with
disabilities,” Journal of Network and Computer Applications, vol. 35,
no. 2, pp. 584–596, 2012.

[12] X. Jia, Q. Feng, T. Fan, and Q. Lei, “RFID technology and its
applications in Internet of Things (IoT),” in Proceedinsg of the 2nd
International Conference on Consumer Electronics, Communications
and Networks (CECNet), Apr. 2012, pp. 1282–1285.

[13] L. D. Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov. 2014.

[14] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, Feb. 2014.

[15] I. Armac and D. Retkowitz, “Simulation of smart environments,” in
The Proceedings of the IEEE International Conference on Pervasive
Services, 15–20 Jul. 2007, pp. 322–331.

[16] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli, “A
simulation platform for large-scale Internet of Things scenarios in urban
environments,” in Proceedings of the First International Conference on
IoT in Urban Space. Brussels: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2014, pp. 50–
55.

[17] Z. Mahmood, Ed., Connectivity Frameworks for Smart Devices.
Springer, 2016.

[18] P. Rosenkranz, M. Wählisch, E. Baccelli, and L. Ortmann, “A distributed
test system architecture for open-source iot software,” in Proceedings of
the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems.
New York: ACM, 2015, pp. 43–48.

[19] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver,
“ioTAbench: An Internet of Things analytics benchmark,” in Proceed-
ings of the 6th ACM/SPEC International Conference on Performance
Engineering. New York: ACM, 2015, pp. 133–144.

[20] D. Wigdor and D. Wixon, Brave NUI world : designing natural user
interfaces for touch and gesture. Burlington, MA 01803: Morgan
Kaufmann, 2011.

[21] N. Petersen and D. Stricker, “Continuous natural user interface: Re-
ducing the gap between real and digital world,” in Proceedings of the
8th IEEE International Symposium on Mixed and Augmented Reality.
IEEE, 19–22 Oct. 2009, pp. 23–26.

[22] S. Benford, D. Snowdon, A. Colebourne, J. O’Brien, and T. Rod-
den, “Informing the design of collaborative virtual environments,” in
Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work (GROUP ’97). New York, NY, USA: ACM,
1997, pp. 71–80.

[23] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver,
“MQTT version 3.1.1 plus errata 01,” OASIS, Standard, 10 Dec. 2015.

[24] G. Mulligan and D. Gračanin, “A comparison of SOAP and REST
implementations of a service based interaction independence middleware
framework,” in Proceedings of the 2009 Winter Simulation Conference,
M. Rossettii, R. Hill, B. Johansson, A. Dunkin, and R. Ingalls, Eds.,
13–16 Dec. 2009, pp. 1423–1432.

[25] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-lite
ontology,” https://www.w3.org/Submission/iot-lite/, W3C, 26 Nov. 2015,
[Last accessed 30 Mar. 2017].

[26] D. Gračanin, D. S. McCrickard, A. Billingsley, R. Cooper, T. Gatling,
E. Irvin-Williams, F. Osborne, and F. Doswell, “Mobile interfaces for
better living: Supporting awareness in a smart home environment,” in
Proceedings of the HCI International 2011: Universal Access in Human-
Computer Interaction: Context Diversity, ser. Lecture Notes in Computer
Science, C. Stephanidis, Ed., vol. 6767. Berlin / Heidelberg: Springer,
9–14 Jul. 2011, pp. 163–172.

[27] D. Gračanin, K. Matković, and J. Wheeler, “An approach to modeling
Internet of Things based smart built environments,” in Proceedings of the
2015 Winter Simulation Conference (WSC), 6–9 Dec. 2015, pp. 3208–
3209.

[28] Garmin Ltd., “Lidar Lite v3 operation manual and technical spec-
ifications,” http://static.garmin.com/pumac/LIDAR Lite v3 Operation
Manual and Technical Specifications.pdf, Garmin Ltd., 2017, [Last ac-
cessed 10 Feb. 2017].

[29] D. Aliakseyeu, B. Meerbeek, J. Mason, H. van Essen, S. Offermans,
A. Wiethoff, N. Streitz, and A. Lucero, “Designing interactive lighting,”
in Proceedings of the Designing Interactive Systems Conference. New
York: ACM, 2012, pp. 801–802.

[30] B. Mrazovac, M. Z. Bjelica, D. Simić, S. Tikvić, and I. Papp, “Gesture
based hardware interface for RF lighting control,” in Proceedings of
the 9th IEEE International Symposium on Intelligent Systems and
Informatics. IEEE, Sep. 2011, pp. 309–314.

[31] M. Handosa, D. Gračanin, H. G. Elmongui, and A. Ciambrone, “Painting
with light: Gesture based light control in architectural settings,” in
Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI
2017), 18–19 Mar. 2017, pp. 249–250.

ConTEL 2017, ISBN: 978-953-184-224-2146




