
BPMN Formalisation using Coloured Petri Nets

Mohamed Ramadan Hicham G. Elmongui Riham Hassan

Computer Science

Arab Academy for Science and

Technology, Cairo, Egypt
mohamed.e.ramadan@gmail.com

Computer and Systems Engineering

Alexandria University

Alexandria, Egypt
elmongui@alexu.edu.eg

Computer Science

Virginia Tech

Blacksburg, VA, USA
rhabdel@cs.vt.edu

Abstract— Business process modeling is an increasingly

popular method for improving organizational efficiency and

quality. The ability to automatically validate the process model

became a significant feature of modeling tools with the

increasing complexity of enterprise business processes and

richness of modeling languages. This paper proposes formal

semantics for process modeling by mapping Business Process

Modeling Notations (BPMN) to Coloured Petri Nets (CPN).

We automate the transformation process to allow for

automatically validating the business process model.

Formalizing BPMN using CPN enables simulating business

process behavior to facilitate the early detection of flaws.

Keywords- Business Process Modeling Notation; BPMN;

Coloured Petri Nets; Formalisation; Semantics; Verification;

Validation

I. INTRODUCTION

Business Process Management (BPM) is concerned with
the methods, techniques and software developed to design,
control, and analyze operational processes involving
humans, organizations, applications, documents and other
sources of information [1]. Organizations have realized the
cost effectiveness of BPM that emerges from flaw detection
and automation of business processes. [2].

Business process modeling is the visual representation of
business processes. It is an effective method for designing,
analyzing, simulating, and improving the current process
[3].Business process modeling practice shows that syntactic
and semantic inconsistencies often appear in process models
[3]. Further, the complexity of modeling techniques and
business processes is increasing recently, which influences
the correctness of the resulting process models [3].
Consequently, vendors of business process modeling tools
are urged to provide for model validation and consistency
checking.

A formal semantics for the modeling languages assist in
moving towards correct implementation of business
processes. The existence of formal semantics enables
modeling tool vendors to support automated model
verification and validation [4].

In this paper, we propose formal semantics for business
process models. The formal semantics is defined as a
mapping between Business Process Modeling Notation
(BPMN) and Colored Petri Nets (CPN). BPMN is a standard
by Object Management Group (OMG) for business process

modeling that provides the easy-to-use front-end to facilitate
human understanding. Petri Nets formalism is a popular and
powerful formal notation for the representation of processes,
which exhibit concurrency, parallelism, synchronization,
non-determinism, and mutual exclusion. The proposed
mapping can be used in modeling tools to automate the
process model validation. Our proposed formalization
provides a comprehensive coverage of the various BPMN
process model constructs along with their data specifications.

The rest of this paper is organized as follows. Section II
provides an overview about BPMN and Coloured Petri Nets.
Section III presents the mapping from BPMN to CPN.
Section IV shows an example for the mapping. Finally
Section V and Section VI discuss the related work and the
conclusion.

II. BACKGROUND

This section gives background on the two related
technologies. First, we summarize the BPMN 2.0 notation
principles as it is the base for the work we propose in this
paper. Next, we explain the concepts of the CPN as the
formal mathematical modeling language.

A. Business Process Modeling Notation

Business Process Model and Notation (BPMN) is a
standard for business process modeling by Object
Management Group (OMG). BPMN provides a graphical
notation for specifying business processes in a Business
Process Diagram (BPD) [5]. The objective of BPMN is to
support business process management for both technical
users and business users by providing a notation that is
intuitive to business users yet able to represent complex
process semantics.

BPMN is designed to cover many types of modeling and
allow the creation of end-to-end Business Processes [5].

There are three basic types of sub-models within an end-
to-end BPMN model: Processes (Orchestration),
Choreographies, and Collaborations.

The five basic categories of BPMN elements for
Business Process Diagram (BPD) are: flow objects, data,
connecting objects, swimlanes, and artifacts.

Flow Objects are the main graphical elements to define the
behavior of a business process. There are three kinds of flow
objects, which are event, activity, and gateway.

Data Items are the primary constructs for modeling data
within the process flow. Data is represented with the four
elements: data objects, data inputs, data outputs, and data
stores.

Connection Objects are the graphical elements to connect
the Flow Objects to each other. There are three kinds of
Connecting Objects, which are Sequence Flow, Message
Flow, and Association.

Swimlanes are the graphical elements to group the modeling
elements. There are two ways of grouping the primary
modeling elements, which are pools and lanes.

Artifacts are used to provide additional information about
the Process. There are two standardized Artifacts, which are
Group and Text Annotation, but modelers or modeling tools
are free to add as many Artifacts as necessary.

This paper focuses on the formalization of BPMN
process models (Orchestration).

B. Coloured Petri Nets

A Coloured Petri Net (CPN) is a graphical language for
constructing models of concurrent systems and analyzing
their properties. CPN is a discrete-event modeling language
combining Petri Nets and the functional programming
language CPN ML which is based on Standard ML. Standard
ML provides the primitives for the definition of data types,
describing data manipulation, and for creating compact and
parameterisable models [6].

CPN is the most well-known kind of high-level Petri
Nets. CPN incorporate both data structuring and hierarchical
decomposition - without compromising the qualities of the
original Petri Nets.

The choice of using CPN as a target for the mapping in
this paper is motivated by the availability of more formal
verification methods, state space analysis and invariant
analysis. Also the existence of hierarchical CPN makes it
possible to model large BPMN process structure and its sub-
processes, and the coloured token concept allow the
modeling of process data.

III. MAPPING BPMN ONTO COLOURED PETRI NETS

This section establishes a mapping scheme of the core
BPMN models to Colored Petri Nets.

A. Common Elements

BPMN common elements might be used in more than
one diagram type (e.g., Process, Collaboration, and
Choreography). Common elements provide modelers with
the capability of showing additional information about a
Process such as operations, error definition, and resources
that can be referenced by activities.

We produce a CPN ML declarations corresponding to the
standard BPMN 2.0 constructs schema. These declarations
allow one-to-one transformation of BPMN elements and
their attributes.

‎Figure 1. shows the mapping of BPMN ItemDefinition
schema definition onto a CPN ML fixed-length color set
declaration. Also tItemKind enumeration, which defines the
nature of the ItemDefinition with one of Information or
Physical values, is mapped onto CPN ML enumeration color
set.

Figure 1. ItemDefinition BPMN XML schema

All other BPMN common elements schema are mapped
onto CPN ML declarations using same idea of mapping the
ItemDefinition which shown in last section. ‎TABLE I.
summarizes the mapping of Common Elements to CPN ML
constructs mapping for the BPMN Common elements.

TABLE I. COMMON ELEMENTS MAPPING

BPMN Element CPN ML Declarations

Message colset tOptionalItemDefinition = list tItemDefinition

with 0..1;

colset tMessage = record

id :STRING *

name:STRING *

itemRef: tOptionalItemDefinition;

Resource colset tResourceParameters = record

name: STRING*

isRequired: BOOL*

paramType: tItemDefinition;

colset tResource = record

id: STRING *

name: STRING *

resourceParameters: tResourceParametersList;

Error colset tOptionalItemDefinition = list

 tItemDefinition with 0..1;

colset tError = record

id: STRING *

name: STRING *

errorCode: STRING *

structureRef: tOptionalItemDefinition;

Interface colset tInterface = record

id: STRING *

name:STRING *

implementationRef: STRING;

Operation colset tOptionalMessageList = list

tMessage with 0..1;

colset tOperation = record

id: STRING *

name:STRING *

interfaceRef:tInterface *

implementationRef: STRING *

inMsg:tMessage *

outMsg:tOptionalMessageList *

errorRef: tErrorList ;

B. Gateways

Gateways are used to control how ssequence flows
interact as they converge and diverge within a Process.

colset tItemDefinition = record id: STRING *

isCollection: BOOL *
itemKind: tItemKind *

structureRef: STRING;

colset tItemKind = with Information | Physical;

A diverging exclusive gateway (decision) is used to
create alternative paths within a process flow. ‎Figure 2. (b)
shows the CPN ML mapping of the exclusive gateway
in ‎Figure 2. (a). As only one of the paths can be taken in the
exclusive gateway, the mapping done using a place
connected with arc to a transition for each path. BPMN
condition expression that is associated with a gateway‟s
outgoing sequence flows is mapped to a CPN transition with
a ML guard inscription. The default path will be mapped as a
path with inverse of all other conditions.

Figure 2. Exclusive Gateway (Decision)

A diverging inclusive gateway (inclusive decision) can
be used to create alternative but also parallel paths within a
process flow.

‎Figure 3. (b) shows the CPN ML mapping of inclusive
gateway in ‎Figure 3. (a).

Figure 3. Inclusive Gateway (Decision/Merging)

Since each path is considered to be independent, all
combinations of the paths may be taken, the mapping done

using a Transition connected with arc to a place for each
path. BPMN condition expression that is associated with a
gateway‟s‎ outgoing‎ sequence‎ flows‎ is‎ mapped‎ to‎ arc‎
inscriptions.

‎TABLE II. summarize the mapping of other BPMN
gateways onto CPN.

TABLE II. GATEWAYS MAPPING

BPMN Gateway CPN Mapping

Exclusive Gateway – Merging

Parallel Gateway – Fork

Parallel Gateway – Join

Exclusive Event-based Gateway

Parallel Event-based Gateway

Figure 4. Task Transformation

 Complex Gateway

Because complex gateway‎ doesn‟t‎ have‎ a‎ default‎
semantic, which should be defined by the modeler,
we‎don‟t‎provide‎a‎mapping‎for‎it‎to‎CPN.‎However‎
the modeler should change it to other gateways to
represent the gateway logic.

(a) BPMN Inclusive Gateway

(b) CPN Inclusive Gateway Module

Condition 1

Default

If C1 then 1`n
else empty

If not C1 then 1`n
else empty

If not C1 then 1`n else empty

If C1 then 1`n else empty

(a) BPMN Exclusive Gateway

(b) CPN Exclusive Gateway Module

Condition 1

Default

[Condition 1]

[not Condition 1]

C. Activities

 Tasks

‎Figure 4. gives a formal semantics for BPMN tasks
in CPN. The CPN formal semantics have all task
BPMN schema attributes mapped to CPN ML
declarations. CPN ML colour set is created for each
BPMN task type to cover all its additional attributes.

 Loop Activity

Loop activity transformation idea is provided by [7]
as shown in ‎Figure 5.

Figure 5. Loop Activity Transformation

 Multi-Instance Activity

Multi-Instance activity can be set to be performed in
sequential or parallel. Sequential mutli-instance
activity will be transformed to while-do loop with n
times as shown in ‎Figure 5. (a). Parallel mutli-
instance activity will be transformed to parallel
gateway (fork) and parallel gateway (join) as
provided by [7].

 Sub-Processes

Sub-Process is transformed using the hierarchical
concept of CPN. Each sub-process will be
represented as a sub-page of the parent process page
as shown in ‎Figure 6.

 Transaction and Compensation

Formal semantics for transaction and compensation
activities is a descendent provided by [8].

 Global Task

A Global Task is a reusable, atomic task definition
that can be called from within any process by a call
activity. Global task will be mapped to CPN subpage
as a process with a one task activity as shown
in ‎Figure 6. (c).

 Call Activity

The‎ call‎ activity‎ acts‎ as‎ a‎ „wrapper‟‎ for‎ the‎
invocation of a global process or global task within
the execution. Call activity will be mapped using
same idea shown at ‎Figure 6. but with CPN multiple
instances subpage concept.

Figure 6. Sub-Process Transformation

D. Events

An event‎ is‎something‎ that‎“happens”‎during‎ the‎course‎
of a process. These events affect the flow of the process and
usually have a cause or an impact and in general require or
allow for a reaction. There are three main types of events,
which are start, end, and intermediate events. ‎Figure 7. (a-b)
show how start and end events will be mapped to CPN
constructs. ‎Figure 7. (c) shows how the event will be mapped
in case of throw a result or catch a trigger (e.g. Message
event) using a CPN transition with ML guards condition.

Start events for event sub-processes can be interrupting
or non-interrupting.

Non-interrupting events allow unlimited number of event
sub-processes for the same event declaration can be modeled
and executed in parallel. Non-interrupting start event for
event sub-processes will be mapped as normal Start event
mapping shown in ‎Figure 7. (a). Interrupting events allow
only one event sub-processes for the same event declaration.
Whenever the event occurs, the associated activity is
terminated. ‎Figure 8. shows the mapping of BPMN
interrupting events onto CPN.

E. Data

This paper represents a mapping for BPMN task
InputOutputSpecification using CPN transition code
segments inscription as shown in ‎Figure 4. .
InputOutputSpecification InputSet and OutputSet will be
mapped onto CPN transition code segment input and output
patterns respectively. BPMN event DataInput or DataOutput

(a) BPMN Sub-Process

(b) CPN Parent Process

(c) CPN Sub-Process

items definitions are mapped using the CPN place color
inscription as shown in ‎Figure 7. .

F. Transformation Process

This paper suggests a process for mapping BPMN
process onto CPN as shown in ‎Figure 9. (a). Transformation
of BPMN common elements should be in order of the
dependency shown in ‎Figure 9. (b).

Figure 7. Events Transformation

Figure 8. Intrrupting Events Transformation

IV. EXAMPLE

‎Figure 10. describes a business process for incident
management process of a software manufacturer is triggered
by a customer requesting help from his account manager
because of a problem in the purchased product. The
assignment of tickets to 1st and 2nd level support agents is
automated by a trouble ticket system and modeled at the
Trouble Ticket System process in ‎Figure 10.

Using the mapping from BPMN onto CPN described in
the previous section, the Trouble Ticket System process
in ‎Figure 10. is mapped onto the CPN in Figure 11.

V. RELATED WORK

The ability to statically check the semantics correctness
of models is a desirable feature for modeling tools. Some
approaches are developed to give formal semantics to model-
based process languages such as Event-Condition-Action
(ECA) business rules, UML activity diagram, and BPMN.
Researches‎ use‎ several‎ formalisms‎methods‎ like‎ π-calculus

as a mathematical formalism, Petri Net as a mathematical
modeling language, or Graph Rewrite Rules.

In [9] authors define ECA business rules for modeling
processes and workflows. In [10] authors‎ are‎ using‎ the‎ π-
Calculus for formalizing these workflow patterns. Using
ECA business rule to model the business process provides
gateways and events, but not exception handling or multiple
instances of sub processes as in BPMN, thus making the
formalization is easier.

In [11] authors provide a formalization of process
modeling by UML Activity diagram‎ using‎ the‎ π-Calculus.
While In [12] author provides a similar formalization using
the Petri Nets and Coloured Petri Nets. UML 2 activity
diagram is more similar to BPMN, however BPMN have
more business constructs to visualize business process.

Figure 9. Transformation Process

Figure 10. BPMN Incident Management Example

In [7] authors propose a mapping from core set of BPMN to
Petri Nets. The paper focuses on the control-flow perspective
of BPM, and does not deal with its process data and tasks
input/output specifications. Paper also work based on earlier
versions of the BPMN standard and raised up some issues;
transaction transformation and compensation tasks, and OR-
join gateways. For OR-join gateways issue was given formal
semantics in [13] and [14]. [8]proposed a formal
transformation for Transaction and Compensation activities.

T
ro

u
b

le
 T

ic
k
e

t
S

y
s
te

m

1
s
t
le

v
e

l
s
u

p
p

o
rt

2
n

d
 l
e

v
e

l
s
u

p
p

o
rt

Issue

received

Open ticket
edit

1st level ticket

Result?

Send mail to

account

manager

Close ticket

2
n

d
 le

v
e

l is
s
u

e

Issue

resolved

Start

Transform BPMN diagram
Common Elements to CPN
Based BPMN dependency

Transform Process Constructs
(Events, Gateways, Activities)

Transform Sequence Flows

End

Resource

Item

Definition

Message

Error

Interface

Operation

(a) Transformation Process
(b) Common Elements

Dependency Graph

(a) Start Event

(b) End Event

(c) Throw/Catch Events (e.g. Message Event)

n
START

DATA

DATA

END

DATA

nn

nn

[Message1]

DATADATA

Message

Figure 11. CPN Incident Management Example

In [15], authors presents a formalization of a subset of the
BPMN 2.0 execution semantics in terms of graph rewrite
rules. Paper provided semantics is less suitable for process
correctness‎verification‎and‎ also‎doesn‟t‎ cover‎ the‎data‎and‎
resource aspects of BPMN. In [16] author proposes to reuse
an existing discrete event simulator based on CPN as a
simulator of BPMN process models. Paper focuses more on
the process simulation and the current version of the meta-
model is quite general and needs an improvement. Also there
are lots of specific attributes of simulation which left out
from the scope of simualtion.

VI. CONCLUSION

This paper presents a formalization of the business

process modeling notation (BPMN) as a standard process

modeling language using Coloured Petri Nets (CPN). Not

only does our mapping span BPMN 2.0 orchestration

constructs, but also cover aspects such as the data and

activity attributes. Moreover, a CPN ML declaration schema

is built for each BPMN XML schema definition. To connect

the dots, we presented the mechanism of mapping a full

BPMN model onto its corresponding CPN. Defining formal

semantics for business process modeling languages helps

the modeling tools vendors to automatically validate the

business model. Further, it helps business analysts simulate

the business process behavior to enable detection of flaws.

Our ongoing work is directed towards building an

automated tool for the transformation. Such automation

should help tool vendors verify the correctness of process

models. Business analysts could also employ our

automation to use CPN simulation tools for process

behavior analysis.

REFERENCES

[1] Ryan K.L. Ko, Stephen S.G. Lee, and Eng Wah Lee, "Business
process management (BPM) standards: a survey," Business Process

Management Journal, vol. 15, pp. 744--791, 2009.

[2] Marc Fasbinder, Why model business processes?, 2007.

[3] L. J. Hommes, "The Evaluation of Business Process Modeling

Techniques," Delft University of Technology, Ph.D. thesis 90-
9017698-5, 2004.

[4] Peter Y.H. Wong and Jeremy Gibbons, "A process semantics for

BPMN," Formal Methods and Software Engineering, pp. 355--374,
2008.

[5] Object Management Group, Business Process Model and Notation
(BPMN), 20th ed.: Object Management Group, 2011.

[6] L. M. Kristensen, L. Wells, and K. Jensen, "Coloured Petri Nets and

CPN Tools for Modelling and Validation of Concurrent Systems,"
STTT, vol. 9, pp. 213--254, 2007.

[7] R.M. Dijkman, M. Dumas , and C. Ouyang, "Formal Semantics and

Analysis of BPMN Process Models using Petri Nets," Queensland
University of Technology, Tech. Rep, 2007.

[8] Tsukasa Takemura, "Formal Semantics and Verification of BPMN

Transaction and Compensation," in APSCC'08. IEEE, 2008, pp. 284--
290.

[9] G. Knolmayer, R. Endl, and M. Pfahrer, "Modeling Processes and

Workflows by Business Rules," Business Process Management, pp.
201--245, 2000.

[10] F. Puhlmann and M. Weske, "Using the pi-Calculus for Formalizing

Workflow Patterns," Business Process Management, pp. 153--168,
2005.

[11] Yang Dong and Zhang ShenSheng, "Using pi-calculus to Formalize

UML Activity Diagram for Business Process Modeling," in ECBS`03,
IEEE, 2003, pp. 47-54.

[12] T.S. Staines, "Intuitive mapping of UML 2 activity diagrams into

fundamental modeling concept Petri net diagrams and colored Petri

nets," in ECBS`08, IEEE, 2008, pp. 191--200.

[13] M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn, "Semantics of

Standard Process Models with OR-Joins," OTM`07, pp. 41--58, 2007.

[14] D. Christiansen, M. Carbone, and T. Hildebrandt, "Formal Semantics

and Implementation of BPMN 2.0 Inclusive Gateways," Web Services

and Formal Methods, pp. 146--160, 2011.

[15] Remco Dijkman and Pieter Gorp, "BPMN 2.0 Execution Semantics

Formalized as Graph Rewrite Rules," in Second International

Workshop, BPMN 2010, Potsdam, 2011, p. 16.

[16] Marek Zäuram, "Business Process Simulation Using Coloured Petri

Nets," Institute of Computer Science, University of Tartu, Tartu,

Master‟s‎Thesis‎2010.

Issue
received

IssueItem

IssueMessag
e

IssueDIOfProcess

Open
ticket

Attr

{TaskType=Script,
id="_1-26", resources=nil, scriptFormat="text/x-groovy",
script="issueReport =
getDataInput(\"IssueDataInputOfScriptTask\") "^
"ticket = new TroubleTicket()"^
"ticket.setDate = new Date()"^
"ticket.setState = \"Open\""^
"ticket.setReporter = issueReport.getAuthor()"^
"ticket.setDesctiption = issueReport.getText()"^
"setDataOutput(\"TicketDataOutputOfScriptTask\", ticket)"}

tScriptTask

input (IssueDIOfProcess);
output (TicketDO);
action
({ItemSubjectRef=TicketItem,
date="", state="", reporter="",
description=""});

IssueDIOfProcess

IssueDIOfProcess TicketDO

TicketItem IssueItem

edit 1st
level ticket

{TaskType=User,
id="_1-77",
resources=[FirstLevelSupportResource]}

input (TicketDO);
output (TicketDO2);
action
(TicketDO);

tNormalTask
Attr

TicketDO
X

Result

TicketDO2

TicketItem
TicketDO

Issue
resolved

[#state TicketDO= "Resolved"]

TicketDO

TicketDO

Send mail to
account
manager

{ TaskType=Send, id="_1-150",
resources=nil,
implementation=unspecified,
operationRef=[MailInterface_sendMailToIs
sueReporterOperation],
msgRef=[AnswerMessage] }

tSendTask
Attr

TicketItem

TicketItem

Close
 Ticket

{TaskType=Script, id="_1-201",
resources=nil,
scriptFormat="text/x-groovy",
script="ticket =
getDataInput(\"TicketDataInputOf_1-
398\")"^
" ticket.close()"}

tScriptTask
Attr

TicketDO
TicketDO

END
TicketDO

TicketItem

