

The **NILE** Data Stream Management System

http://www.cs.purdue.edu/Nile/

M.H. Ali W.G. Aref A.Elmagarmid H.Elmongui M.Eltabakh T.Ghanem M.Hammad M.Mokbel X. Xiong **Computer Science Department, Purdue University**

Architecture

NILE Data Stream Management System			
PREDATOR Database Management System	Continuous Window Queries	On-line Data Mining	Context Awareness
Abstract data types	Stream data Type		
SQL Language	WINDOW <predicate></predicate>		
Query processor	+/ u /- Tuples		
Query optimizer	Smart Load Shedding Shared Execution		
Storage engine	Stream_Scan Operator		

Predicate-window Queries

The window-of-interest of the predicate-window W includes only tuples qualifying the window predicate P(Attr)

- □As an object O changes its value of Attr. O can:
 - □Qualify P(Attr) and enter W (+)
 - □Change the value of Attr while still inside W (u)
 - □Disqualify P(Attr) and expire from W (-)

Tuples expire from the predicatewindow in an out-of-order fashion

Context Awareness

NILE Features

- ✓ Stream-In Stream-Out
- ✓ Negative Tuples
- √ Predicate-window Queries □Shared Execution
- √Smart Load-shedding via **Promising Tuples**
- □Context-aware Query Processing
- □Built-in Online Data Mining Operators
- ■Shared Summaries
- □Admission Control (for streams and queries) and QoS Support

Stream-in Stream-out

PURDUE

Negative Tuples

Negative tuples reduces the response time of the query

The Input-triggered Approach

The Negative Tuples Approach

Promising Tuples

Use the limited resources to process only the *promising* tuples

Which tuples to process to produce the best query answer given that I can process only 3 tuples?

■ Maximum Number of Output Tuples:

- Process the three tuples with value 5 from Stream 1
- □ Random Sample of the Correct Output:
- ☐ Process two tuples with value 5 and one tuple with value 9 from Stream1

■Outlier Tuples:

Process the tuple with value 3 from Stream 2

Applications

Monitoring On-Line Transactions

Traffic Monitoring

