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Abstract

In this paper, we introduce PLACE¥, a distributed
spatio-temporal data stream management system for mov-
ing objects. PLACE* supports continuous spatio-temporal
queries that hop among a network of regional servers.
To minimize the execution cost, a new Query-Track-
Participate (QTP) query processing model is proposed
inside PLACE*. In the QTP model, a query is continu-
ously answered by a querying server, a tracking server,
and a set of participating servers. In this paper, we fo-
cus on query plan generation, execution and update algo-
rithms for continuous range queries in PLACE* using QTP.
An extensive experimental study demonstrates the effective-
ness of the proposed algorithms in PLACE™*.

1. Introduction

With the advances of location-detection technologies
and mobile devices, moving objects are able to report their
locations periodically to data stream servers as the ob-
jects move in space. Based on the collected location infor-
mation, spatio-temporal data stream management systems
(ST-DSMS for short) have the ability to answer continuous
queries over moving objects.

Due to the pervasiveness of moving objects, one sin-
gle data stream server cannot sustain excessive numbers of
moving objects and continuous queries for large or dense
areas. As a result, a large or a dense area is usually divided
into smaller geographical regions each of which is covered
by a regional data stream server. A regional server com-
municates with only local objects and processes only local
queries within its coverage region. The regional data stream
servers form a server network. Figure 1(a) gives an exam-
ple where the entire space is divided to six regions A — F.
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Fig. 1. A Network of Regional Servers

Figure 1(b) illustrates a network of six regional data stream
servers each of which covers a corresponding region given
in Figure 1(a). An object reports its location periodically
to the server covering the object’s current location. As it
moves, an object may switch the server it reports to based
on the object’s location.

To illustrate the new challenges of query processing in
a data stream server network, we consider the continuous
range query plotted in Figure 1(a). Assume that in a bat-
tlefield, a commander issues the following query ¢: “Con-
tinuously, inform Commander i with all friendly units that
are within ten miles from Soldier f”. In Figure 1(a), the
circles represent the query region at different times as f
moves. ¢ has the following characteristics: (1) ¢ must be
answered collectively and continuously by regional servers
whose coverage regions overlap ¢’s query region. (2) Dur-
ing f’s move, the overlapping regions between ¢ and re-
gional servers continuously change. Further, the set of re-
gional servers that ¢ hops among dynamically changes. (3)
The focal object f probably resides in a regional server
different from the server of the query issuer i. To enable
query updating, effective mechanisms must be established
between the server of f and the server of . (4) Moving ob-
jects including ¢ and f may change their regional servers
as they move. Handoff procedures must be designed to en-



sure the continuity and correctness of query processing as
objects move from one regional server to another.

Motivated by the above challenges, we develop the
PLACE* system, a distributed spatio-temporal data stream
management system over moving objects. PLACE* sup-
ports distributed continuous spatio-temporal queries over a
set of regional spatio-temporal data stream servers (PLACE
servers). Query processing in PLACE* is based on a unique
Query-Track-Participate (QTP) model. In QTP, a regional
server collaborates in answering a query g based on the
server’s role(s) with respect to g, i.e., a querying server,
a tracking server, or a participating server to q. The
QTP model is scalable and is designed to minimize com-
munication cost. Based on the QTP model, efficient dis-
tributed query processing and query updating algorithms
are proposed. PLACE* supports objects and queries mov-
ing among regional servers by providing query handoff pro-
cedures to guarantee the continuity and correctness of query
processing. To the best of the authors’ knowledge, PLACE*
is the first system that supports continuous spatio-temporal
queries over moving objects in distributed data stream man-
agement systems.

The current PLACE* system supports distributed contin-
uous range queries and k-Nearest-Neighbor (kNN) queries
over a network of regional servers. Due to space limitation,
in this paper we illustrate our ideas by focusing on con-
tinuous range query processing in PLACE*. For continu-
ous kNN query processing, interested readers please refer
to our technical report [31] for detailed algorithms and ex-
perimental evaluations.

The contributions of this paper are summarized as fol-
lows.

e We introduce the Query-Track-Participate (QTP)
model for distributed continuous query processing in-
side the PLACE* system.

e We propose efficient algorithms for continuous range
query processing in PLACE*. The algorithms cover
initializing, executing and updating distributed query
plans. Efficient handoff algorithms are also proposed
to support server-switching of objects and queries.

e We present a comprehensive set of experiments that
demonstrate the effectiveness of the PLACE* system.

The remainder of this paper is organized as follows.
Section 2 highlights the related work. Section 3 gives an
overview to the PLACE* system. In Section 4, we present
the algorithms for distributed continuous range query pro-
cessing in PLACE*. Experimental evaluations are presented
in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

There are many research prototypes of data stream man-
agement systems, for instances, TelegraphCQ [8], Nia-
garaCQ [10], PSoup [9], STREAM [4, 21], Aurora [2],
NILE [13], PIPES [7], and CAPE [24]. The common char-
acteristic of these systems is centralized processing of mov-
ing objects and continuous queries.

Distributed continuous query processing over data
streams has been addressed in the literature. Distributed Ed-
dies [30] studies policies for routing tuples between op-
erators of an adaptive distributed stream query plan. Au-
rora* [11] focuses on scalability in the communication in-
frastructure, adaptive load management, and high system
availability. Flux [26] addresses the challenges of detrimen-
tal imbalances as workload conditions change during con-
tinuous execution. Borealis [1] addresses the issues of re-
vising query results and query specifications during query
execution. D-CAPE [16] works over a cluster of query pro-
cessors using a centralized controller. D-CAPE is designed
to distribute query plans and monitor the performance of
each query processor with minimal communication cost.
However, no previous work has addressed the challenges
of processing continuous spatio-temporal queries over ob-
jects that move among a set of servers.

Recent research efforts focus on continuous query pro-
cessing in spatio-temporal database management systems,
e.g., answering stationary range queries [6, 23], continu-
ous range queries [12], continuous kNN queries [15, 22, 27,
28, 29, 32], and generic query processing [14, 18]). In con-
trast to PLACE*, these works assume that all object data
and queries are processed in a centralized server.

PLACE* is part of the PLACE project [3] developed
at Purdue University. PLACE* is a distributed data stream
management system built on top of a set of regional PLACE
servers [17, 18, 20, 19]. PLACE* distinguishes itself by
supporting continuous spatio-temporal queries over a set of
regional servers where both queries and objects constantly
move.

3. Overview of The PLACE* System
3.1. PLACE?* Environment

The PLACE* environment consists of a set of regional
servers. Each regional server covers certain geographical re-
gion. Regions covered by two regional servers may overlap.

Home Server Each moving object o permanently regis-
ters with one regional server. Upon registration, o gets a life-
time globally-unique identifier with its server identifier as a
prefix. This is similar to what happens in a cellular phone
network; a subscriber in the Greater Lafayette Area (in In-
diana, USA) is assigned a phone number starting with an



Update Request

H Focal Update
i Focal Final
iUpdates Resull;

fq iq

Fig. 2. The QTP Model

area code of 765. The subscriber keeps the same number
even if she roams somewhere else. The permanently regis-
tered server of an object o is referred to as the home server
of o (HS(0)). HS(0) can be identified by checking the pre-
fix of 0’s global identifier.

Visited Server An object o moves freely and reports lo-
cation periodically to the server covering its current loca-
tion. The server that o currently reports to is referred to as
the visited server of o (V S(0)). If o lies in a common re-
gion covered by multiple servers, o selects its visited server
based on pre-defined criteria such as signal strength. When
o switches its visited server, the home server of o (H.S(0))
is notified about this switch so that HS (o) is always aware
of the current V'S (o).

3.2. Regional PLACE Servers

PLACE servers [19, 20] are employed in PLACE* as
regional data stream servers. In a PLACE server, a query
is processed in an incremental manner. A PLACE server
continuously outputs positive or negative tuples. A posi-
tive tuple implies that the tuple is to be added into the pre-
vious query answer. A negative tuple implies that the tu-
ple is no longer valid and is to be removed from the previ-
ous query answer. Incremental query processing algorithms
in a single PLACE server have been extensively studied
in [19, 20, 18, 17]. To simplify our discussion, in the paper
we view each single regional PLACE server as a black box
that accepts spatio-temporal query registrations and out-
puts positive/negative answer tuples according to the data
streams in the local region.

Regional PLACE servers are connected with each other
through high-speed reliable wired networks. Each server
periodically advertises its presence along with its coverage
region over the network. For each regional PLACE server,
a Regional Server Table (RST) is maintained to keep the
servers identifiers, the coverage regions and the network ad-
dresses of all the servers.

3.3. The QTP Model

PLACE* processes distributed continuous spatio-
temporal queries through its unique Query-Track-
Farticipate (QTP) model. In the QTP model, a query

Notation | Definition
HS(o) | Home server of object o
VS(o) | Visited server of object o
QS(q) | Querying server of query ¢
TS(q) | Tracking server of query ¢
PS(q) | Participating server of query ¢
RST Regional server table

Table 1. Table of Notations

q is answered collaboratively by a querying server, a track-
ing server, and a set of participating servers.

Definition 1 For a query q, the querying server QS(q) is
the regional server that q’s issuer object i4 currently be-

longs to, i.e., QS(q) = VS(iq).

Definition 2 For a query q, the tracking server T'S(q) is the
regional server that q’s focal object f, currently belongs to,
ie, TS(q) =VS(fy).

Definition 3 For a query q, a participating server PS(q) is
a regional server that currently participates in answering q.

The QTP model is depicted in Figure 2. In Figure 2,
PSi(q) ...PSp(q) stand for m different participating
servers for query q. PS(q)s process g locally within
PS(q)s’ local coverage regions. PS(g)s then transmit local
query results to QS(q). QS(q) assembles local results from
PS(g)s and transmits the final query result to i4. QS(q) is
also responsible for updating the set of P.S(q)s and for co-
ordinating query updates with P.S(q)s. T'S(q) is responsi-
ble for tracking updates of f, and for forwarding the up-
dates to QS(q). Note that for a query g, a regional server
may act as a combination of the above roles. Table 1 sum-
marizes the notations used in the paper.

The QTP model is designed with the following desirable
properties: (1) QTP supports dynamic query types where
both the query focal object and the query issuer object may
move continuously; (2) QTP avoids bottlenecks by pushing
processing down to the participating servers; (3) QTP min-
imizes the communication cost: users issue queries to and
obtain query answers from the currently visited server with-
out message forwarding through other servers.

Example. Consider ¢ in Figure 1(a). When ¢ starts (refer
to the shaded circle), QS(q) is server A since ¢’s issuer ob-
ject i belongs to A at this time. T'S(q) is server C as ¢’s focal
object f belongs to C. PS(q)s include servers C and F as ¢
overlaps the coverage space of these two servers. At the last
timestamp (refer to the last dashed circle), Q.S(q) changes
to server D as ¢ belongs to D then. T'S(q) changes to server
A as f belongs to A. The PS(q)s consist of server A and B
as g overlaps the coverage space of these two servers.
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4. Continuous Range Query Processing

We focus on distributed continuous range query process-
ing in PLACE*. To make our discussion generic, we assume
that the query issuer is different from the query focal ob-
ject. Throughout this section, ¢ in Figure 1(a) is used to il-
lustrate our ideas. Figure 3(a) re-plots g using discrete time
points (tg, t1, etc.). At each time point, the focal object f re-
ports a new location and thus causes a query update. We as-
sume that ¢ is issued at time .

4.1. Initial Plan Generation

When an issuer ¢ submits a query ¢ to ¢’s visited server

VS(i), VS(i) assigns g a global query identifier. Then
V'S(i) generates an initial execution plan for ¢ in the fol-
lowing three phases.
Phase I: Focal Localization. ¢’s query range can be deter-
mined only after the location of the focal object f is ob-
tained. In focal localization, VS (#) requests the most recent
location of f from f’s visited server V.S(f). Focal localiza-
tion takes place in two round-trip steps.

1. VS(i)<=HS(f): VS(i) requests the server identi-
fier of V.S(f) from f’s home server HS(f). Notice
that V.S(i) is aware of HS(f) by checking the pre-
fix of f’s life-time identifier. Then HS(f) acknowl-
edges with the server identifier of V.S(f).

2. VS(i)<=VS(f): VS(i) subscribes f’s future up-
dates from V. S(f). In the subscription, V.S(¢) sends
f’s object identifer (f.oid) along with ¢’s query iden-
tifier (q.qid) to V.S(f). Then V. S(f) stores the pair of
(f.oid, q.qid) in a forwarding request table so that fu-
ture updates of f can be forwarded to V.S(i). V.S(f)
acknowledges with f’s most recent location.

After focal localization, V'S (4) is referred to as QS(q)
and V.S(f) is referred to as T'S(q).
Phase II: Assembler Operator Generation. ().S(g) con-
tinues to determine PSet(q), i.e., the set of P.S(g)s. QS(q)
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Fig. 4. Example: Plan Initialization/Updating

searches the Regional Server Table (RST) using g’s range.
For range queries, all regional servers whose coverage re-
gions overlap ¢ are included in PSet(q).

QS(q) generates an assembler operator based on
PSet(q). An assembler operator accepts local query re-
sults from all PS(q)s and generates a final query result.
An assembler operator maintains a participating server ta-
ble (PST). For each PS(q), there is a corresponding entry in
the PST table. A PST entry is of the form (PSid, Result),
where PSid is the identifier of a PS(q) and Result is the
most recent local result sent from the P.S(q).

Phase III: Local Plan Generation. QS(q) sends ¢ along
with f’s location to all the servers in PSet(q). Upon receiv-
ing the request, a P.S(q) generates a local plan based on the
query processing engine of the regional PLACE server.
Example. Figure 4(a) gives the initialized query plan for
the query shown in Figure 3(a) at time ¢q. The plan con-
sists of four parts. Part 1 lies in server C (serving as 7'S(q))
which forwards f’s update to Q.S (q). Part 2 lies in server A
(serving as QS(q)) which contains the assembler operator.
Part 3 and 4 contain ¢’s local plans in server C and F (serv-
ing as PS(q)s), respectively. R(f;,,10m3) represents the
query region centered at f’s location (with respect to time
to) with a radius of 10 miles.

4.2. Distributed Query Execution

In this section, we describe the execution process for dis-
tributed range queries. We assume that the query range does
not move during execution. Handling query movement is
addressed in Sections 4.3 and 4.4.

After the plan for a continuous range query g is gener-
ated, PS(q)s treat g as a local query and process ¢ indepen-
dently based on local object streams. Then, the P.S(gq)s send
incremental local results to QS(¢q). PLACE* distinguishes
two different types of range queries, namely, non-aggregate
queries and aggregate queries.

Non-aggregate Range Query. This type of range query
asks for moving objects within the query range without ag-
gregations. For non-aggregate range queries, the P.S(q)s
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send positive and negative object tuples to QS(q) directly.
Upon receiving an object tuple ¢ from a P.S(q), the assem-
bler operator of QS(q) inserts ¢ (positive tuple t) into or re-
moves ¢ (negative tuple ¢) from the previous result set of
PS(q)’s PST entry, according to ¢’s positive or negative
property.

Aggregate Range Query. The second type of range query
asks for aggregated result within the query range. Currently,
the aggregate queries supported in PLACE* are COUNT)(),
MIN( and MAX(). COUNT() reports the total number
of objects within the query range. MIN()/MAX() reports
the object whose coordinate is the smallest/largest along
the x- or y-axis within the query range. An example of a
MIN()/MAX() query is to return the object whose loca-
tion is west-most/east-most among all the objects within
the query range. For aggregate range queries, the P.S(q)s
perform aggregations over local results before sending to
QS(q). When QS(q) receives a new aggregated answer tu-
ple ¢ from a P.S(q), the assembler operator stores ¢ in PST.
QS(q) calculates the final query result by aggregating over
local results of PS(g)s.

Example. Figure 3(b) gives a snapshot for the query shown
in Figure 3(a). The grey points represent the locations of
four objects 01 to o4 at time ¢y, while the black points rep-
resent the locations of the four objects at some time between
to and ty.

Assume that Figure 3(b) represents a non-aggregate
query that reports the identifiers of all objects inside the
query range. Figure 5(a) illustrates the query execution pro-
cess. At time tg, the query result consists of 01, o3 from
server C and o, from server F. After some time when oq
leaves server C and enters server F, server C reports a neg-
ative tuple for o; while server F reports a positive tuple for
o). Similarly, server F reports a negative tuple for o, when
02 moves out of the query range. o), is reported by server C
as a positive tuple when o4 moves to inside the query range.
Finally, the query result is updated as of, o} from server C
and o} from server F.

Now assume that Figure 3(b) represents a MAX() aggre-
gate query asking for the east-most object within the query
range. Figure 5(b) illustrates the query execution process.
At time t(, the query result is 0; by comparing 01 (the east-
most object from server C) with oy (the east-most object
from server F). When o, leaves server C and enters server
F, servers C and F update their local results to o3 and o],
respectively. Server A then calculates o) as the new result.
When 02 moves, no update is sent as the movement does not
affect the local result of server F. When o3 moves, server C
updates the local result to of. Finally when o4 moves into
server C, o) is reported by server C as local result. Then
server A updates the final result to 0.

4.3. Query Plan Updating

When an object moves, queries focusing on this object
change their query ranges. In this section, we concentrate on
updating a query plan when the query’s focal object moves
within the same server.

In PLACE*, updating an existing query plan follows the
following three phases:

Phase I: Focal Update Forwarding. An object o periodi-
cally reports location updates to V.S (o). Upon receiving o’s
update, V.S(0) looks up the forwarding request table and
forwards the new update to all regional PLACE servers that
have subscribed o’s updates.

Phase II: Assembler Operator Updating. ) S(q) updates
q’s assembler operator after the forwarded update of ¢’s fo-
cal object f is received. The algorithm for updating an as-
sembler operator at S(q) is given in Table 2. The algo-
rithm starts by obtaining the old set of PS(q)s from the
PST inside the assembler operator (Step 1). Based on ¢’s
new query range, the new set of PS(g)s is calculated by
searching the regional server table (RST) for the regional
servers overlapping ¢’s new range (Step 2). For regional
servers newly added as P.S(g)s, the algorithm sends to them
a query registration command. The query registration com-
mand contains the query ¢ as well as f’s location. For re-
gional servers that no longer serve as PS(q)s, a command
is sent to terminate ¢’s execution in these servers. For re-
gional servers that remain in PSet, a query update com-
mand along with f’s new location is sent to them (Step 3
and 4).

Phase I1I: Local Plan Updating. If the query registration
command is received by a regional server, the server gen-
erates a query plan locally. This process is the same as the
phase of local plan generation in Section 4.1. If the query
dropping command is received, the server terminates the
query’s local plan. In the case that the query update com-
mand is received by a regional server, the server updates ¢’s
local plan by re-calculating ¢’s query range based on f’s
new location. If the query range update causes a change in



Algorithm RangeAssemUpd(Ranges, PST, RST)
INPUT: Rangey: query range based on the update of f
PST: the Participating Server Table
RST': the Regional Server Table

—

PSet,q = the set of participating servers in PST;

2 PSetyneqy = the set of regional servers overlapping
with Range (through searching RST);

3 Compare PSet,e, against PSetyq;

3.1 Shew = PSetpew - PSetord;
3.2 Sold = PSetold - PSetnew;
33 Seur = PSetoiqg N PSetyew;
4 For every server S in:
4.1 Shew: send register request for q;
insert a new entry for S in PST};
4.2 Soiq: send drop request for q;
drop the entry for S from PST;
4.3 Scur: send update request for q;

Table 2. Assembler Operator Updating

the local query result, the updates to the query result are sent
to QS(q).

Example. Figure 4(b) gives the updated distributed query
plan at time ¢; for the query ¢ shown in Figure 3(a). In Fig-
ure 4(b), the updated parts are plotted in shaded colors. Fol-
lowing the plan update process, server B is added as a new
participating server as its coverage space overlaps ¢’s new
query range. Server B generates a local plan (Part 5) for ¢
once server B receives the query registration command from
server A. Server C and F remain as ¢’s participating servers.
q’s query ranges in server C and F are updated based on f’s
new location when the query update commands from server
A are received by these two servers.

4.4. Query Plan Shipping

When an object o moves in space, o may switch its vis-
ited server when o leaves the coverage space of the old
visited server (V' .S,4(0)) and enters the coverage space
of the new visited server (V.Sy,cq,(0)). Similar to cellular
phone networks [5, 25], handoff procedures are carried out
in PLACE* to transfer information of o between V'S,4(0)
and V' S,ew(0). However in PLACE*, handoff procedures
need to guarantee the continuity and correctness of query
processing. In PLACE*, an object o may move as a fo-
cal object of some queries and/or move as an issuer object
of some other queries. Accordingly, the handoff procedure
in PLACE* consists of two phases, namely, forwarding re-
quest shipping and assembler operator shipping.

Phase I: Forwarding Request Shipping. When o
moves from V.S,4(0) to V.Spew(0), V. Spew(0) instead of
V' Soi4(0) is responsible to forward o’s updates. The three-
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step forwarding request shipping phase transfers the for-
warding requests regarding o from V' .S,;4(0) to VSyer (0).

S1: VS,i4(0) searches the forwarding request table (FRT,
for short) for the corresponding entries of 0. V'S 4(0)
sends the found entries to V'S,,cq, (0).

S2: V Spew(0) inserts received entries to local FRT and ac-
knowledges.

S3: VS,14(0) removes the forwarding entries of o from lo-
cal FRT.

Phase II: Assembler Operator Shipping. If o issues a
query ¢, an assembler operator for ¢ is generated in V.5(0).
When o moves from V' S,4(0) t0 V Spew(0), the assem-
bler operator of ¢ should be transferred from V'.S,;4(0) to
V Snew(0).

Figure 6 illustrates the four-step assembler operator
shipping process. This process aims to minimize the sus-
pension time of query execution. More importantly, the pro-
cess guarantees that object tuples are neither duplicated nor
lost during the transfer while the execution order of object
tuples remains unchanged.

S1: VSa(0) sends q to V.Sye(0). VSpew(0) generates
an assembler operator that is the same as the assembler
operator in V' .S,4(0).

S2: VSia(0) notifies PS(q)s to send future results of ¢
to V Spew(0). Meanwhile, V'S,,;4(0) notifies T'S(q) to
send future updates of f to V.S,e, (0). Future results
and focal updates sent to V'S, (0) will be temporar-
ily buffered in V' Sy,cq(0). Next, V.Soq(0) waits for
acknowledgements from the P.S(q)s and T'S(q). The
assembler operator in V' S,;4(0) continues executing
until the acknowledgements are received. As the un-
derlying network provides reliable in-order delivery, it
is guaranteed that no more messages will be sent to
V' Soia(0) after all acknowledgements are received.

S3: VS,ia(0) sends to V.Spe(0) the whole Participat-
ing Server Table (PST) followed by unprocessed re-
sult fragments and unprocessed focal updates.



S4: The assembler operator in V' .Sy, (0) starts to execute.
The unprocessed data forwarded from V'S,;4(0) are
processed before the buffered data sent from PS(q)s
and T'S(q). This guarantees the in-order execution of
data tuples. At this time, the assembler operator in
V' Soia(0) can be safely removed.

5. Performance Evaluation

In the experiments, the data space is a unit square that
is evenly divided into nine (3 x 3) square regions. Each
region is covered by a regional PLACE server running on
a dedicated Intel Pentium IV machine with dual 3.0GHz
CPUs and 512MB RAM. Regional servers are connected
with each other through TCP connections.

Within each regional server, a number of 50,000 local
objects are uniformly generated. Local objects move inside
the coverage region of the corresponding regional server. To
simulate moving objects that travel among regional servers,
a global object generator generates 50,000 global objects
that are randomly distributed and move in the entire data
space. Object locations are updated every 30 seconds.

1,000 square-shaped range queries are generated at each
regional server. Focal objects and issuer objects of range
queries are randomly selected from global objects. We test
with various query sizes ranging from 1% to 10% of the
area of the entire space. To reduce communication over-
head, each participating server sends local results every sec-
ond. Multiple result tuples are packed in one message. The
maximum size of a message is 1,024 bytes.

In our experiments, we observe that one single PLACE
server cannot sustain the total loading as stated above, i.e.,
500,000 objects and 9,000 queries in total. On the contrary,
PLACE* exhibits satisfactory performance. This observa-
tion witnesses the scalability of the PLACE* system.

5.1. System Response Time

Plan Initialization Time evaluates the time spent to es-
tablish a distributed query plan since the query is issued.
As given in Figure 7(a), the initialization time for range
queries increases very slightly along with the query size. A
larger query is apt to overlap more regional servers. How-
ever, since local plans of participating servers are estab-
lished concurrently, having more participating servers only
increases the plan initialization time slightly.

Answer Update Response Time evaluates the elapsed
time between the moment when an object update u is re-
ceived at a regional server and the moment when u affects
the final query answer at a querying server. As given in Fig-
ure 7(b), the time for range queries increases with query
size. The main reason is because when query size becomes
larger, a querying server receives more answer updates per
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second and yields a longer processing time. For the worst
case, the response time is less than 680 milliseconds for the
realistic range parameters.

Query Update Response Time evaluates the elapsed
time between the moment when a query ¢’s focal object re-
ports an update v and the moment when ¢’s plan has been
updated based on u. As indicated in Figure 7(c), the up-
date response time increases very slightly (from 75ms to
85ms) along with query size. This is because all participat-
ing servers can update local plans simultaneously after a
querying server issues an update request.

Server Handoff Time evaluates the time for a complete
handoff when an object switches its server. Three types of



range queries are studied: (1) Non-aggregate queries (re-
ferred to as Non-aggregate), (2) Count() aggregate queries
(referred to as Count()), and (3) Max() aggregate queries
(referred to as Max()). As indicated in Figure 7(d), the
handoff time for non-aggregate queries increases steadily
with query size. This is mainly because when the query
size increases, the PST of the assembler operator contains
more answer objects. Transferring a larger-sized PST old
server to new server requires longer communication time.
On the contrary, the handoff times for Count() and Max()
queries are negligible compared to the handoff time of non-
aggregate queries. This is because the PST for an aggre-
gate query contains only aggregated results from participat-
ing servers and thus it is quite small.

5.2. Communication Cost

Local Result Communication Cost evaluates the num-
ber of messages sent from participating servers to query-
ing servers. Figure 7(e) gives the average number of mes-
sages sent per second for range queries. The number of mes-
sages sent for non-aggregate queries increases rapidly with
the query size. This is because more objects reside in the
query range when the query size increases. For Count() and
Max() queries, the numbers of messages are much smaller
as only aggregated results are sent by participating servers.

Server Handoff Communication Cost evaluates the to-
tal number of messages incurred during a server handoff op-
eration. Figure 7(f) gives the number of messages for range
queries. During a handoff, non-aggregate range queries in-
cur linear increase in communication costs when the query
size increases. On the other hand, the number of handoff
messages for aggregate range queries remains constantly
small regardless of query size.

6. Conclusions

In this paper, we presented PLACE*, a distributed data
stream management system for moving objects. PLACE*
supports continuous spatio-temporal queries over multi-
ple regional servers through the Query-Track-Participate
model. Specifically, we have presented the algorithms for
answering continuous range queries. Experimental evalua-
tions demonstrate that PLACE* is scalable and efficient in
processing distributed continuous spatio-temporal queries.
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