# Transduction of a Complex Signal Through the Normal Cochlea and Through the Cochlear Implant









<sup>1</sup>Department of Otorhinolaryngiology, Unit of Audiovestibular Medicine, Faculty of Medicine, <sup>2</sup>Department of Radiology, Faculty of Medicine, <sup>3</sup>Department of Computer and Systems Engineering; faculty of Engineering; Alexandria university, Egypt

#### Introduction & Reasoning

#### CI device $\rightarrow$ Brain $\rightarrow$ Audition

- Acoustic signals reaching CI → derived electrical Signal → stimulates the auditory system bypassing sensory receptors
- The ascending auditory system will reprocess the electrical signals generated by the CI.
- An assumed final outcome = signal detection, discrimination, recognition & comprehension.

| Auditory Sensory<br>Stimulation | Auditory electrical<br>Stimulation |
|---------------------------------|------------------------------------|
| Auditory exposure               | Auditory exposure                  |
| Auditory                        | Auditory                           |
| experience                      | experience                         |
| <u> </u>                        | <u> </u>                           |

## Auditory learning Auditory learning Auditory Sensory Stimulation

- Is initiated by a normal cochlea
- Is accomplished by an impaired cochlea through amplification

### Auditory stimulation through cochlear implants

- Initiate auditory neural stimulation bypassing the auditory sensory system.
- Subsequently bypassing all cochlear active mechanisms: sensory afferent and sensory efferent controls as well as middle and external ears delay times.

#### Acoustic versus electrical stimulation

- Shift from the natural sequence of acoustic signal processing:
- External ear middle ear cochlear excitation patterns and sensory transduction → neural firings:

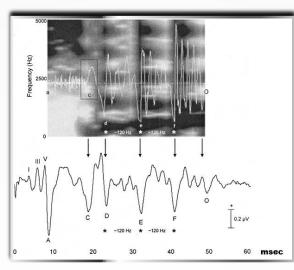
A derived electrical signal that directly excites the ganglia of the auditory nerve

## What brain functions are linked to learning?

- Precision with which the brain processes phonological structure of spoken language.
- The neural signatures corresponding to timing and spectral variants in speech → neural encoding or representation
- Ability to pick speech in background noise (skill learned with time, improves with age)
- Central auditory processing abilities robust/ vulnerable/ poor to challenged listening.

#### Conclusions

- The growth function of the biological signal(cABR), measured by RMS amplitude, that parallels signal intensity may be an indication of:
- A. Well Developed auditory pathway with increased neural density and consequently increased voltage capacity. This may reflect the importance of early stimulation and its organizing factors
- B. Decreased RMS may indicate decreased surviving neural population which will influence the performance with the cochlear implant.
- The biological signal in cochlear implantees follows the acoustics of the signal and presents a heterogeneous latency shift which is less than norms due to absence of acoustic delay of external and middle ear transfer times and cochlear travelling wave.
- Variation of response reproducibility may reflect a low fidelity neural system affected by the etiology of hearing loss.


# Study of CI transduction by speech ABR

# The cABR a measure of CI transduction hypothesis

- Response correlation to speech stimulus reflects on:
  - A. Fidelity of CI processing of that signal.
  - B. Integrity and fidelity of brainstem processing.

#### The speech ABR (cABR)

- cABR is a tool to assess brainstem representation of a complex response.
- The stimulus is a CV syllable and consists of a transient consonant and a sustained vowel parts.
- The response consists of an onset respone (waves I, III and V) followed by the frequency following response.
- Normal cABR indicates normal brainstem encoding of a complex signal presented to the brain which will subsequently influence speech understanding and communication.



(Johnson et al., 2005)

- It Infers discrimination of spectro-temporal fluctuations in speech signal.
- It Infers discrimination of sounds with rapid acoustic transitions that are easily confused e.g stop consonants (momentary stop/rapid release of airflow).

#### Methods and participants

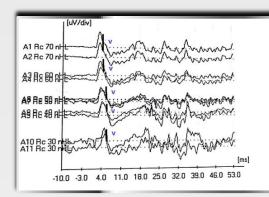
#### **Implantees**

- n=10, 5.6-10.92 years old, 5 males and 5 females.
- Implanted with right Med-EL standard electrode array ,full insertion depth.
- Coding strategy (FS4 temporal weighting).
- Subjects with abnormal CT findings due to malformed cochlea or meningitis were excluded.

#### Norms

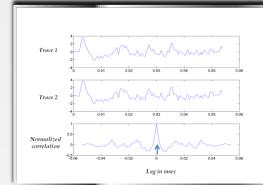
- n=2, 11 years old, males.
- Normal hearing age-matched controls.
- Normal click ABR responses.
- Speech syllable 40 msec /da/ was used to elicit speech ABR
- Stimulus delivered at a repetition rate of 2.1/sec with alternating polarity.
- Biologic navigator pro® and contralateral vertical electrode montage were used.
- A loudspeaker for CI monitored through Radioshack sound level meter at the subject's head and right TDH headphones for norms.
- Responses were online bandpass filtered by a 30-500 Hz. I/O Latency and RMS-intensity functions were done.
  Non-contrast multislice CT of the petrous

# bones was performed to affirm full electrode insertion depth.


#### Acknowledgments

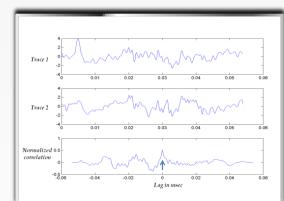
To cochlear implant unit, faculty of medicine, Alexandria university for providing the participants of the study

To Dr. Nina Kraus lab for providing the brainstem toolbox

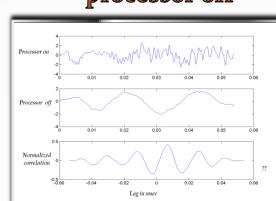

#### Results

cABR intensity I/O function /da/ syllable through loudspeaker for a CI patient




cABR Wave V latency: range 1.81 - 4.82 msec at 70 dBHL with a mean = 2.77± 1.06

cABR trace reproducibility at 70 dBHL

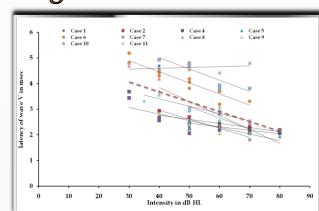



cABR Trace reproducibility: was maximal at moderate and high intensities (up to 99.65%) at 60 dB HL

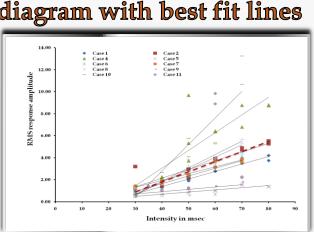
cABR trace reproducibility at 30 dBHL



# Correlating a trace at 60 dB HL with CI processor off




| Criteria of trace repro                   |                                              |  |
|-------------------------------------------|----------------------------------------------|--|
| Lag between traces in msec: ideally= zero | Percentage correlation , ideally almost 100% |  |
| Study Lag range                           | Study trace correlation                      |  |
| - 18.875- 21.625 msec                     | <b>17.64</b> % - <b>99.65</b> %              |  |
| (threshold included)                      | (threshold included)                         |  |


# Latency-intensity function scatter diagram with best fit lines

31.58%-99.65%

- 0.375 - 0.375 msec



# RMS- intensity function scatter diagram with best fit lines



#### /da/- cABR correlation results

- cABR stimulus /da/ correlation: range 4.55% -27.74% with a  $\overline{\chi}$  =  $16.62 \pm 0.05$
- cABR FFR- vowel correlation: range 14.22% -29.39% at 60 and 70 dB HL with a  $\overline{\chi}$  = 19.90%  $\pm$  7.62%
- cABR FFR- vowel correlation in norms ranged from 20-30% at a delay range of 5.6 and 8.1 ms. (Cunningham et al., 2001)

Stenver View: Oblique Coronal Reconstruction showing full electrode insertion

