
TRUPI: Twitter Recommendation based on
Users’ Personal Interests

Hicham G. Elmongui1,2, Riham Mansour3, Hader Morsy4, Shaymaa Khater5,
Ahmed El-Sharkasy4, and Rania Ibrahim4

1 Alexandria University, Computer and Systems Engineering,
Alexandria 21544, Egypt,
elmongui@alexu.edu.eg,

2 GIS Technology Innovation Center, Umm Al-Qura University,
Makkah, Saudi Arabia
elmongui@gistic.org

3 Microsoft Research Advanced Technology Lab,
Cairo, Egypt

rihamma@microsoft.com
4 Alexandria University, SmartCI Research Center,

Alexandria 21544, Egypt,
{hader,sharkasy,ribrahim}@mena.vt.edu

5 Virginia Tech, Computer Science Department,
Blacksburg, VA 24061, USA

skhater@vt.edu

Abstract. Twitter has emerged as one of the most powerful micro-
blogging services for real-time sharing of information on the web. The
large volume of posts in several topics is overwhelming to twitter users
who might be interested in only few topics. To this end, we propose
TRUPI, a personalized recommendation system for the timelines of twit-
ter users where tweets are ranked by the user’s personal interests. The
proposed system combines the user social features and interactions as
well as the history of her tweets content to attain her interests. The
system captures the users interests dynamically by modeling them as
a time variant in different topics to accommodate the change of these
interests over time. More specifically, we combine a set of machine learn-
ing and natural language processing techniques to analyze the topics of
the various tweets posted on the user’s timeline and rank them based
on her dynamically detected interests. Our extensive performance eval-
uation on a publicly available dataset demonstrates the effectiveness of
TRUPI and shows that it outperforms the competitive state of the art
by 25% on nDCG@25, and 14% on MAP.

Keywords: Twitter, personalized recommendation, dynamic interests

1 Introduction

Twitter has emerged as one of the most powerful micro-blogging services for
real-time sharing of information on the web. Twitter has more than 500 million

2

users 6, and the volume of tweets one receives is persistently increasing especially
that 78% of Twitter users are on the ubiquitous mobile devices [34].

The high volume of tweets is getting overwhelming and reduces one’s pro-
ductivity to the point that more than half US companies do not allow employees
to visit social networking sites for any reason while at work [28]. In addition, a
large base of twitter users tend to post short messages of 140 characters reflect-
ing a variety of topics. Individual users’ interests vary over the time, which is
evidenced by the dynamic Trends feature of Twitter, which suggests hashtags,
metadata tags prefixed by the symbol #, to the users based on her followees [32].

For the above reasons, Twitter users share a need to digest the overwhelming
volume. Recommending interesting content to the user is harder in the case of
Twitter, and microblogs in general, as the tweet is limited in size and thus leaks
the context in which it was posted. Existing systems that recommend tweets
to the users either 1) provide ranking models that are not personalized to the
users’ interests; 2) do not capture the dynamic change in the user’s interest
over the time; 3) use Latent Drichlet Allocation (LDA) [5] to represent user’s
interests and hence is not scalable to large datasets [25] ; or, 4) assume special
user marking to the tweets of interests [7, 9, 10, 13, 19, 27, 36, 39].

In this paper, we propose TRUPI, a Twitter Recommendation based on
User’s Personal Interests. TRUPI aims at presenting the tweets on the user
timeline in an order such that tweets that are more interesting to her appears
first. In order to do so, TRUPI learns the changing interests of the users over the
time, and then ranks the received tweets accordingly. More specifically, TRUPI
employs an ensemble of interest classifiers that indicate the most probable inter-
est label of each tweet on the user’s timeline. Tweets are then fed into a ranking
model to order the tweets based on the current user’s interests. The user’s in-
terests are modeled as a time variant level of interests in different topics.

The rest of the paper is organized as follows. Section 2 highlights related work.
Section 3 presents an overview of TRUPI. Section 4 gives details of the interest
detection and the tweet ranking. In Section 5, TRUPI’s extensive performance
evaluation is presented before we conclude by a summary in Section 7.

2 Related Work

Many recommendation systems have been proposed in the literature for Twitter.
Research efforts go into many directions: from recommending hashtags [12, 21,
41] and recommending URLs [6] to providing news recommendations [26] and
suggesting followees [15, 16, 20].

New approaches have been proposed to deal with recommending tweets on
the user’s timeline. Duan et al. use a learning-to rank algorithm using content
relevance, account authority, and tweet-specific features to rank the tweets [9].
Uysal and Croft construct a tweet ranking model making use of the user’s re-
tweet behavior. They rank both the tweets and the users based on their likelihood

6 http://www.statisticbrain.com/twitter-statistics/ visited March 2014

3

of getting a tweet re-tweeted [36]. Similarly, Feng and Wang propose personalized
recommendation for tweets [10]. In their evaluation, the metric of measuring the
interest in a tweet is whether the user would re-tweet or not. Our proposed
recommender is different from these approaches as their ranking models are not
personalized, and they do not capture the dynamic change in the user’s interest.

Nevertheless, Pennacchiotti et al. introduce the problem of recommending
tweets that match a user’s interests and likes [27]. Also, Chen et al. recommend
tweets based on collaborative ranking to capture personal interests [7]. These
two propositions neither account for the change in the user interest over time
nor work on the semantic level.

Guo et al. propose Tweet Rank, a personalized tweet ranking mechanism
that enables the user to mark tweets as interesting by defining some interest
labels [13]. Our proposed approach does not assume any special user marking.

Yan et al. propose a graph-theoretic model for tweet recommendation [39].
Their model ranks tweets and their authors simultaneously using several net-
works: the social network connecting the users, the network connecting the
tweets, and the network that ties the two together. They represent user interest
using LDA, which is not scalable for large datasets [25].

Little work has been done in the dynamic personalized tweet recommenda-
tion that accounts for the change in the user interests. Abel et al. explore the
temporal dynamics of users’ profiles benefiting from semantic enrichment [2].
They recommend news articles, and not tweets, for topic-based profiles.

Our previous work proposes an approach for dynamic personalized tweet
recommendation using LDA [19]. In that work, a model is defined to classify the
tweet into important or not important tweet. In TRUPI, tweets are ranked based
on the user’s dynamic level of interest in the tweet topic. TRUPI explores the
tweet content (and semantic) along with numerous additional social features.

3 Overview of TRUPI

TRUPI recommender consists of two phases. The first phase is to create the
user profiles, which contains the topics of interests to the user. The user profile
is dynamic; i.e., it changes over time. The second phase occurs in an online
fashion to give a ranking score to the incoming tweet. This ranking score would
provide for presenting the tweet to the user by its importance.

User profiles contain the different topics of interest to the users. Each profile
is characterized by a weighted set of interests or topics (e.g., sports, politics,
movies, etc.) The weights represent the probability that a user is interested in a
certain topic. Such probabilities are learned from the user history as follows.

First, the tweets are classified into different topics. The topics are learned
from a large chunk of tweets. Those tweets are clustered so that each cluster
contains tweets corresponding to the same topic of interest. Next, each cluster is
labeled with the topic with the help of a series of topic classifiers. This process
results into the capability of placing an incoming tweet to its matching cluster,
and hence, the tweet would be labeled with the same topic as the cluster.

4

The dynamic user profiles are created from the history of each individual
user. Her last history tweets are used to compute the probability distribution of
her topics of interests. The history tweets may either be time-based or count-
based. A time-based history of length t contains the tweets that appeared on
her timeline in the last t time units. A count-based history of size k contains the
last k tweets that appeared on her timeline. While the former might reflect the
recent history, the latter might have to be used in the case of low activity on the
timeline.

When the system receives an incoming tweet, it consults the user profile
in order to give a ranking score to this tweet. Many features are used in this
scoring technique. Those features reflect how much interest the user may have
in the topic of the tweet or in the sender (e.g., a close friend or celebrity). Such
features would be extracted from the history of the user. They would reflect how
she interacted with the recent tweets of the same tweet topic or the past tweets
coming from this sender.

Tweets are preprocessed before entering our system. The aim of this prepro-
cessing is to prepare the tweet for the subsequent algorithms. The text of the
tweet is normalized as follows:

– Ignore tweets that do not convey much information. This includes tweets
with number of tokens less than 2.

– Replace slang words with their lexical meaning using a slang dictionary. We
use the Internet Slang Dictionary & Translator [1].

– Lexically normalize extended words into their canonical form. We replace any
successive repetition of more than two characters with only two occurrences.
For instance, coooool will be transformed into cool.

– Normalize Out-of-Vocabulary (OOV) words. We detect OOV words in a
tweet using GNU Aspell [11]. For each OOV word, we get candidate replace-
ments based on lexical and phonemic distance. We then replace the OOV
word with the correct candidate based on edit distance and context.

– Identify named entities in the tweet and associate them with it for later
usage. We use the Twitter NLP tools [3].

– Extract hashtags from the tweet and associate them with it.
– Run a Twitter spam filter [30] on any tweet containing a URL. If a tweet

turns out to be spam, it is ignored. Otherwise, extract the URLs from the
tweet and associate them with it.

– Represent the tweet as a feature vector using TF-IDF representation [29].
To emphasize on the importance of the tweet, we doubled the weights for
the hashtags and named entities. This is in line with the fact that tweets
with hashtags get two times more engagement as stated in [17].

4 Interest Detection and Tweet Ranking

This section provides details for how the user’s interests are detected and how
his tweets would be ranked in TRUPI, the proposed Twitter recommendation
system.

5

4.1 Tweet Topic Classification

Since our main target is to capture the user’s dynamic interests on the semantic
level, we will need first to understand the tweet by classifying the tweets into
topics (i.e., sports, music, politics, etc.)

Tweet Clustering and Classification It is worth mentioning that since the
tweet is short in nature, its context is leaked and it is not easy to capture it.
Hence, we enrich the tweets’ text by grouping tweets that talk about the same
topic in one cluster using the Online Incremental Clustering approach [4].

Online incremental clustering is applied by finding the most similar cluster to
a given tweet, which is the one whose centroid has the maximum cosine similarity
with the tweet [24]. If the cosine similarity is above a certain threshold, the tweet
is inserted into that cluster. Otherwise, the tweet forms a new cluster by itself.

Next, topic-based binary SVM classifiers are applied to classify the cluster
into one of the topics [8]. The cluster is classified into a topic if the confidence
score exceed a certain threshold. The binary SVM classifiers were trained by
labeling the tweets using a predefined list of keyword-topic pairs that is ob-
tained by crawling DMOZ – the Open Directory Project [31]. The pairs are
constructed as follows. From dmoz.org/Recreation/Food/, for instance, we get
<drink, cheese, meat, . . .>. We create the list of keyword-topic pairs as <drink,
Food>, <cheese, Food>, <meat, Food> . . .

Two white lists are automatically constructed for each topic; one for hashtags,
and one for named entities. The white lists consist of hashtags and named entities
that belong to a certain topic. The construction is described in Section 4.1.

Upon the arrival of a tweet to the user, it is clustered using the used online
incremental clustering algorithm. The tweet will be labeled with the same label
of the cluster it belongs to. If the tweet does not belong to any cluster, or if
the tweet belongs to an unlabeled cluster, we check whether the tweet contains
hashtags or named entities that belong to our white lists. In this case, the tweet
is labeled with the corresponding topic. Otherwise, we try URL labeling, which
labels the tweet using the content and the slugs of the URL.

White Lists Construction Two white lists are automatically constructed for
each topic. One list for named entities and one for hashtags contained in the
tweets. These white lists would be looked up for incoming tweets. The rational
behind these white lists is that some named entities or hashtags are associated
with specific topics. For instance, Ronaldo and #WorldCup would be associated
with sports, whereas Madonna and #Beatles are associated with the topic music.

Constructing Named Entities White Lists: We used DBpedia [22], a large-
scale multilingual knowledge base extracted from the well-known online ency-
clopedia, Wikipedia [37]. First, we retrieved the different resources; i.e., named
entities, along with their types. Then we grouped the types that belong to the
same topic together. This is done by projecting the types on the formed clusters

6

Table 1. Examples of Wikipedia’s Named Entities Retrieved from DBpedia.

Sports Music Politics Food
Jim Hutto Nelson Bragg Dante Fascell Pisto
Tiger Jones Maurice Purtill James Kennedy Teacake

Stephon Heyer Michael Card Riffith Evans Apple pie
Allen Patrick Faizal Tahir Barack Obama Pancake
Fujie Eguchi Claude King Daniel Gault Potato bread

and assigning the topic of the cluster to the named entity type. For instance, the
types Musical Artist and Music Recording would fall, among others, in clusters
that are labeled with the topic music. This grouping would results into hav-
ing white lists for the topics of interests (e.g., music). Each white list contains
the named entities associated with the corresponding topic. Table 1 contains
examples of the named entities associated with some topics of interests.

Since we get the canonical form of the named entities from DBpedia, we ex-
tend the white lists with the synonyms of the named entities as well. For instance,
for Albert Einstein, we also add Einstein, Albert Eienstein, Albert LaFache Ein-
stein, Alber Einstein, etc. We use WikiSynonyms to retrieve the synonyms of
the named entities given the canonical form [38].

Constructing Hashtags White Lists: The construction of the white lists
for the hashtags is more involved than that for the named entities. Different
hashtags are to be associated with their corresponding topics. This association
needs to be learned from the historical tweets as follows.

The procedure starts by looping on each tweet w in the labeled clusters.
Each tweet is assigned a confidence score, denoted by C(w), that refers to how
confident we are with respect to the learned topic of this tweet. This confidence
score is the same as the classification confidence of the binary SVM topic classifier
used to label the cluster in the aforementioned topic classification step.

Each hashtag, denoted by h, is assigned a score, that is a measure of its
relatedness to each topic p. The score function score(h|p) is defined as

score(h|p) =

∑
w∼p
h∈w

C(w)

|P | +
∑
h∈w

C(w)
(1)

where P is the set of the adopted topics of interests and w ∼ p means that
the tweet w is labeled as topic p. The rational behind this scoring function is:
the more tweets belonging to a certain topic, tagged with a certain hashtag,
the closer relation is between this hashtag and the topic. Also, |P | is added in
the denominator to prevent the score to be 1 and to discriminate between the
heavily-used and lightly-used hashtags in the cases where they are not used in
more than one topic.

Hashtags with score above 0.7 were chosen to be added to our hashtags white
lists. Table 2 gives the top 5 related hashtags to each topic obtained using our
approach.

7

Table 2. Top-5 Topic Related Hashtags.

Sports Music Politics Food
#running #dance #radio #organic
#baseball #jazz #liberty #wine
#cycling #opera #libertarian #beer

#lpga #christian #environmental #coffee
#basketball #rock #politicalhumor #chocolate

URL Labeling We found that 56% of the extracted URLs have slugs in their
path. A slug is the part of a URL which identifies a page using human-readable
keywords (e.g., heavy metal in http:www.example.org/category/heavy-metal).
Slug words are extracted from the URL using regex and are added to the tweet
text. The expanded tweet is labeled again using the binary SVM classifier.

In addition, 6% of the extracted URLs are for videos from [40]. For such
URLs, the category field on the video page is used as the label of the tweet.

4.2 Dynamic Interests Capturing

In this subsection, we describe how TRUPI captures the dynamic level of interest
of the user in a certain topic.

For a certain user u, the dynamic level of interest is computed for each topic
from the recent history of the user interaction on the microblog. This interaction
includes her tweets, re-tweets, replies, and favorites. As described before, the
tweets of the user u are either unlabeled or are successfully labeled as described
in Section 4.1. For each tweet that is labeled when it fell in one of the clusters, it
gets assigned the same confidence score of the binary SVM topic classifier. For
tweets that are labeled using a white list, their confidence score is treated as 1.
For unlabeled tweets, the confidence score is 0.

Without loss of generality, we assume a time-based history. On any day d,
a user u is active if he interacts with a tweet. The set of tweets with which she
interacted is denoted by Wd. Her level of interest at a topic p is computed as

Lu,d(p) =
∑
w∼p
w∈Wd

C(w) (2)

where C(w) is the confidence score in the topic label of a tweet w and w ∼ p
means that the tweet w is labeled as topic p.

Upon the arrival of a new tweet w′, the user’s level of interest in this tweet
would be a function of two things: 1) the topic of the tweet, which is labeled as
p′ with the same method as in Section 4.1, and 2) the dynamic level of interest in
the different topics of the tweets earlier this day and in the past week as in [19].
The user’s level of interest in the tweet w′, which arrived on day d′, is computed
as

Iu(w′) = C(w′)

d′∑
d=d′−7

Lu,d(p′) (3)

8

where C(w′) is the confidence score in the topic label of a newly arrived tweet
w′.

The user’s profile contains the topics of interests to the user. Specifically, for
each topic p′, it contains the dynamic level of interest of the user in it as

DynLOIu(p′) =

d′∑
d=d′−7

Lu,d(p′) (4)

The dynamic level of interest is computed over a sliding window. At the
beginning of each day, the oldest day in the window is flushed away and incom-
ing tweets enters the window. This sliding window allows for the incremental
evaluation of the dynamic level of interest. In other words, the dynamic level
of interest does not have to be recomputed with every incoming tweet, which
allows for TRUPI to work in a timely manner.

4.3 User Tweets Ranking

A machine-learned ranking model [18] is used to assign a ranking score to the
incoming tweets to a certain user. The tweets are posted in a descending order
of the assigned ranking scores.

RankSVM is the data-driven support vector machine used to rank the tweets [9].
It learns both the ranking function and the weights of the input features. For
a user u1 receiving a tweet w authored by user u2, TRUPI uses five ranking
feature categories, which are:

– The dynamic level of interest in the topic of w, as computed in Section 4.2.
– The popularity features of w. They include the number of favorites and re-

tweets of w.
– The authoritative features of u2. They include the number of u2’s followers,

followees, and tweets.
– The importance features of w to u1. They are divided into two groups:

1) globally importance features, which include whether w contains a URL
or a hashtag, and 2) locally importance features, which include whether w
mentions u1 or whether it contains a hashtag that was mentioned by u1

during last week.
– The interaction features. They include the number of times u1 mentioned,

favorited, or replied to a tweet authored by u2. They also include the sim-
ilarity between the friendship of u1 and u2 (the number of common users
both of them follow). They also include the number of days since the last
time they interacted together.

5 Experimental Evaluation

We perform extensive experiments to evaluate the quality performance of the
proposed recommender. In our experiments, we compare with the state-of-the-
art techniques. All used machine-learning algorithms were executed from the
WEKA suite [14].

9

Table 3. 5-fold Cross Validation for Topic Classification

Topic Precision Recall F1

Sports 94.76% 94.68% 94.72%
Music 94.29% 94.29% 94.29%
Politics 98.16% 98.19% 98.17%
Food 98.11% 98.09% 98.10%
Games 97.65% 97.62% 97.64%

We adopted the dataset used in [23], which is publicly available at [35]. This
dataset contains 284 million following relationships, 3 million user profiles and
50 million tweets. We sampled this dataset to retrieve 20,000 users, 9.1 million
following relationships and 10 million tweets. The sampling consisted of the first
20K users from a breadth first search that started from a random user (id =
25582718). We complemented the dataset by crawling Twitter using the Twitter
REST API [33] to retrieve all the actions which have been done on the sampled
tweets including Favorite, Re-tweet and Reply-to.

We consider the positive examples during periods which we call Active Pe-
riods. An active period is a time frame during which the user have performed
an action. Only tweets within this active period are considered in our system in
order to avoid the negative examples caused by users being inactive during long
periods of time. We scan the tweets in a window of size 10 tweets before and
after the re-tweeted, replied to, or favorited tweet.

For the topic classification, we use the micro-averaged F-measure, which con-
siders predictions from all instances [24]. For the ranking module, we use the nor-
malized discounted cumulative gain (nDCG), which measures the performance
based on a graded relevance of the recommended entities [24]. We also use the
Mean Average Precision (MAP), which has been shown to have especially good
discrimination and stability [24].

5.1 Performance of Topic Extraction

In our experiments, we adopted 5 topics of interests, namely, sports, music,
politics, food, and games. A binary SVM classifier is created for each topic. The
tweets were labeled using the list of keyword-topic pairs obtained from DMOZ -
the Open Directory Project [31]. The classifiers were evaluated by measuring the
5-fold cross validation accuracy on our labeled 10M tweets dataset. The results
are shown in Table 3.

5.2 Performance of Personalized Binary Recommendation

The personalized binary recommendation model does not rank the tweets. It
just tells whether an incoming tweet is important to the user or not if she acts
upon it [19]. The ground truth adopted was that a tweet is important to a user
if she replied to, re-tweeted, or favorited it. The feature used in TRUPI were the

10

Table 4. 10-fold Cross Validation for Binary Recommendation Classifiers

Approach Precision Recall F1

DynLDALOI(J48) 74.22% 88.61% 80.78%
TRUPI 85.70% 82.76% 84.20%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

nD
C

G

nDCG@5 nDCG@10

nDCG@25 nDCG@50

Fig. 1. Personalized Ranking Recom-
mendation using (nDCG)

0

0.1

0.2

0.3

0.4

0.5

M
A

P

Fig. 2. Personalized Ranking Recom-
mendation (MAP)

same features used in the ranking model in Section 4.3. We compared TRUPI
with the state-of-the-art binary recommendation technique, DynLDALOI, which
introduced the notion of dynamic level of interest in the topics using LDA [19].
Table 4 shows the 10-fold cross validation of the binary recommendation. The
F1 measure of TRUPI outperforms DynLDALOI by 4.23%.

5.3 Performance of Personalized Ranking Recommendation

We evaluated the TRUPI personalized ranking recommendation model through
extensive experiments. TRUPI was compared with four state-of-the-art tech-
niques: 1) RankSVM [9], which learns the ranking function and weight of the
input features; 2) DTC [36], where a decision tree based classifier is build and a
tweet ranking model is constructed to make use of the user’s re-tweet behavior;
3) PersonTweetReRanking [10], which consider whether a tweet is important if
the user re-tweets it; and 4) GraphCoRanking [39], where the tweets are ranked
based on the intuition that there is a mutually reinforcing relation between tweets
and their authors. Our ground truth was whether the user was interested, i.e.,
acted upon a top ranked tweet.

Figures 1 and 2 show the performance of the ranking recommendation tech-
niques using nDCG@5, nDCG@10, nDCG@25, nDCG@50, and MAP. The fig-
ures show that TRUPI outperforms all the other competitors. TRUPI outper-
forms RankSVM by 130%, 87%, 78%, 67%, and 83% on nDCG@5, nDCG@10,
nDCG@25, nDCG@50, and MAP respectively. It also outperforms PersonTwee-
tReRanking by 73%, 69%, 52%, 37% and 49% on them respectively. Similarly,
it outperforms DTC by 49%, 35%, 35%, 27%, and 54% on the same metrics

11

Table 5. TRUPI’s versions

Version Features

TRUPI v1 A base version (without all the added features)
TRUPI v2 Adding the hashtag white lists to v1
TRUPI v3 Adding the named entities white lists to v2
TRUPI v4 Adding the URL labeling to v3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

nD
C

G

nDCG@5 nDCG@10

nDCG@25 nDCG@50

Fig. 3. Effect of TRUPI’s Components
(nDCG)

0

0.1

0.2

0.3

0.4

0.5

M
A

P

Fig. 4. Effect of TRUPI’s Components
(MAP)

respecitively. Finally, TRUPI outperforms GraphCoRanking by 24%, 19%, 25%,
15%, and 14% on them respectively.

5.4 Analyzing TRUPI’s Components

We scrutinized the different components of TRUPI. We illustrate the effect of
the different components by looking at 4 versions of TRUPI. The versions are
shown in Table 5. Note that TRUPI v4 is the full fledge proposed TRUPI.

Figures 3 and 4 show the performance of the different versions of TRUPI us-
ing nDCG@5, nDCG@10, nDCG@25, nDCG@50, and MAP. Adding the hash-
tags white lists gave a relative gain for nDCG@10 by 2% on the base case.
The named entities white lists gave 14% on the same metric, whereas the URL
labeling added 3%. On MAP, they added 10%, 5%, 2% respectively.

6 Acknowledgement

This material is based on work supported in part by Research Sponsorship from
Microsoft Research.

7 Conclusion

In this paper, we proposed TRUPI, a personalized recommendation system based
on user’s personal interests. The proposed system combines the user social fea-
tures and interactions as well as the history of her tweets content to attain her

12

interests. It also captures the dynamic level of users’ interests in different top-
ics to accommodate the change of interests over time. We thoroughly evaluated
the performance of TRUPI on a publicly available dataset and have found that
TRUPI outperforms the competitive state-of-the-art Twitter recommendation
systems by 25% on nDCG@25, and 14% on MAP.

References

1. http://www.noslang.com/. Internet Slang Dictionary & Translator (Last accessed
2014/06/01).

2. Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Analyzing User Modeling
on Twitter for Personalized News Recommendations. In UMAP’11, 2011.

3. Alan Ritter and Sam Clark. https://github.com/aritter/twitter nlp, 2011. Twitter
NLP Tools (Last accessed 2014/06/01).

4. Hila Becker, Mor Naaman, and Luis Gravano. Beyond Trending Topics: Real-World
Event Identification on Twitter. In Procs. ICWSM’2011, 2011.

5. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
The Journal of Machine Learnnig Research, 3:993–1022, 2003.

6. Jilin Chen, Rowan Nairn, Les Nelson, Michael Bernstein, and Ed Chi. Short and
Tweet: Experiments on Recommending Content from Information Streams. In
CHI, 2010.

7. Kailong Chen, Tianqi Chen, Guoqing Zheng, Ou Jin, Enpeng Yao, and Yong Yu.
Collaborative Personalized Tweet Recommendation. In Procs. of SIGIR’12, 2012.

8. Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learn-
ing, 20(3):273–297, 1995.

9. Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum. An
empirical study on learning to rank of tweets. In COLING’10, 2010.

10. Wei Feng and Jianyong Wang. Retweet or Not?: Personalized Tweet Re-ranking.
In Procs. of WSDM’13, pages 577–586, 2013.

11. GNU Aspell. http://aspell.net/, 2011. (Last accessed 2014/06/01).
12. Fréderic Godin, Viktor Slavkovikj, Wesley De Neve, Benjamin Schrauwen, and

Rik Van de Walle. Using Topic Models for Twitter Hashtag Recommendation. In
Procs. of WWW’13 Companion, 2013.

13. Yuhong Guo, Li Kang, and Tie Shi. Personalized Tweet Ranking Based on AHP:
A Case Study of Micro-blogging Message Ranking in T.Sina. In WI-IAT’12, 2012.

14. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10–18, 2009.

15. John Hannon, Mike Bennett, and Barry Smyth. Recommending twitter users to
follow using content and collaborative filtering approaches. In RecSys’10, 2010.

16. John Hannon, Kevin McCarthy, and Barry Smyth. Finding Useful Users on Twit-
ter: Twittomender the Followee Recommender. In ECIR’11, pages 784–787, 2011.

17. Huffington Post’s Twitter Statistics. http://www.huffingtonpost.com/belle-beth-
cooper/10-surprising-new-twitter b 4387476.html. (Last accessed 2014/06/01).

18. Thorsten Joachims. Optimizing Search Engines Using Clickthrough Data. In Procs.
of KDD’02, pages 133–142, 2002.

19. Shaymaa Khater, Hicham G. Elmongui, and Denis Gracanin. Tweets You Like:
Personalized Tweets Recommendation based on Dynamic Users Interests. In So-
cialInformatics’14, 2014.

13

20. Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter,
a Social Network or a News Media? In Procs. of WWW’10, pages 591–600, 2010.

21. Su Mon Kywe, Tuan-Anh Hoang, Ee-Peng Lim, and Feida Zhu. On Recommending
Hashtags in Twitter Networks. In Procs. of SocInfo’12, pages 337–350, 2012.

22. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. DBpedia - A Large-scale, Multilingual Knowledge Base
Extracted from Wikipedia. Semantic Web Journal, 2014.

23. Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang.
Towards Social User Profiling: Unified and Discriminative Influence Model for In-
ferring Home Locations. In Procs. of KDD’12, pages 1023–1031, 2012.

24. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

25. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. In ICLR’2013 Workshops, 2013.

26. Gianmarco De Francisci Morales, Aristides Gionis, and Claudio Lucchese. From
Chatter to Headlines: Harnessing the Real-time Web for Personalized News Rec-
ommendation. In Procs. of WSDM’12, pages 153–162, 2012.

27. Marco Pennacchiotti, Fabrizio Silvestri, Hossein Vahabi, and Rossano Venturini.
Making Your Interests Follow You on Twitter. In Procs. of CIKM’12, 2012.

28. Robert Half Technology. http://rht.mediaroom.com/index.php?s=131&item=790
, 2009. Whistle - But Don’t tweet - While You Work (Last accessed 2014/06/01).

29. Gerard Salton and Christopher Buckley. Term-weighting Approaches in Automatic
Text Retrieval. Information Processing & Management, 24(5):513–523, 1988.

30. Igor Santos, Igor Miñambres-Marcos, Carlos Laorden, Patxi Galán-Garćıa, Aitor
Santamaŕıa-Ibirika, and Pablo Garcia Bringas. Twitter Content-Based Spam Fil-
tering. In Procs. of CISIS’13, pages 449–458, 2013.

31. The Open Directory Project. http://www.dmoz.org/. (Last accessed 2014/06/01).
32. Twitter. http://www.twitter.com/, 2006. (Last accessed 2014/06/01).
33. Twitter REST API. https://dev.twitter.com/docs. (Last accessed 2014/06/01).
34. Twitter Usage. http://about.twitter.com/company. (Last accessed 2014/06/01).
35. UDI-TwitterCrawl-Aug2012. https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-

UDI-TwitterCrawl-Aug2012, 2012. (Last accessed 2014/06/01).
36. Ibrahim Uysal and W. Bruce Croft. User oriented tweet ranking: a filtering ap-

proach to microblogs. In Procs. of CIKM’11, pages 2261–2264, 2011.
37. Wikipedia. http://www.wikipedia.org/, 2001. (Last accessed 2014/06/01).
38. WikiSynonyms. http://wikisynonyms.ipeirotis.com/. (Last accessed 2014/06/01).
39. Rui Yan, Mirella Lapata, and Xiaoming Li. Tweet Recommendation with Graph

Co-ranking. In Procs. of ACL’12, pages 516–525, 2012.
40. YouTube. http://www.youtube.com/, 2005. (Last accessed 2014/06/01).
41. Eva Zangerle, Wolfgang Gassler, and Günther Specht. Recommending#-Tags in

Twitter. In Procs. of SASWeb 2011, pages 67–78, 2011.

