
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

BTRecurTutor: a tutorial for practicing recursion in
binary trees

Sally Hamouda, Stephen H. Edwards, Hicham G. Elmongui, Jeremy V. Ernst &
Clifford A. Shaffer

To cite this article: Sally Hamouda, Stephen H. Edwards, Hicham G. Elmongui, Jeremy V. Ernst
& Clifford A. Shaffer (2020): BTRecurTutor: a tutorial for practicing recursion in binary trees,
Computer Science Education, DOI: 10.1080/08993408.2020.1714533

To link to this article: https://doi.org/10.1080/08993408.2020.1714533

Published online: 20 Jan 2020.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2020.1714533
https://doi.org/10.1080/08993408.2020.1714533
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2020.1714533
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2020.1714533
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1714533&domain=pdf&date_stamp=2020-01-20
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1714533&domain=pdf&date_stamp=2020-01-20

ARTICLE

BTRecurTutor: a tutorial for practicing recursion in binary
trees
Sally Hamoudaa, Stephen H. Edwardsb, Hicham G. Elmongui c, Jeremy V. Ernstd

and Clifford A. Shafferb

aDepartment of Math/CS, Rhode Island College, Providence, RI, USA; bDepartment of Computer
Science, Virginia Tech, Blacksburg, VA, USA; cDepartment of Computer and Systems Engineering,
Alexandria University, Alexandria, Egypt; dDepartment of Social Sciences & Economics, Embry-Riddle
University, Daytona Beach, FL, USA

ABSTRACT
Recursion in binary trees has proven to be a hard topic. There
was not much research on enhancing student understanding of
this topic. We present a tutorial to enhance learning through
practice of recursive operations in binary trees, as it is typically
taught post-CS2. We identified the misconceptions students
have in recursive operations on binary trees. We designed
a code writing exam question to measure those misconceptions.
We built a tutorial that trains students on avoiding those mis-
conceptions through the use of a semantic code analyzer that
detects misconceptions and provides appropriate feedback. Our
results show an improvement in student performance when
using the tutorial along with the practice exercises, and even
more improvement when the same exercises are used with
a semantic code analyzer. The best way to use our tutorial to
enhance student performance on advanced recursion is to allow
students solving the tutorial exercises with the the semantic
feedback.

ARTICLE HISTORY
Received 29 April 2019
Accepted 8 January 2020

KEYWORDS
Recursion; binary Trees;
auto-graded Exercises;
misconceptions

1. Introduction

This paper presents our efforts to enhance the learning of recursion as it is
typically taught post-CS2. This is often cast in the form of recursive operations
on binary trees. Recursion in binary trees has proven to be a hard topic that
students struggle with (Grissom, Murphy, McCauley, & Fitzgerald, 2016; Murphy,
Fitzgerald, Grissom, & McCauley, 2015). While there has been a lot of attention
given to teaching introductory recursion, there was previously not much
research on enhancing student understanding of recursion at an intermediate
level. Existing work has identified student misconceptions in the context of
binary trees, but this was not related to recursion (Karpierz & Wolfman, 2014).
What work we do know of related to recursion in binary trees addresses generic

CONTACT Clifford A. Shaffer shaffer@vt.edu Department of Computer Science, Virginia Tech, Blacksburg,
VA, USA

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2020.1714533

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-5947-7450
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2020.1714533&domain=pdf&date_stamp=2020-01-17

problems in writing recursive functions, not specific misconceptions regarding
recursion in binary trees.

We have conducted student interviews and analyzed many student answers
to code writing questions on recursion in binary trees to come up with a list of
the common misconceptions held by students for this topic. We present our
findings from the interviews and the analysis of student answers as a list of
misconceptions and difficulties, inspired by Ragonis and Ben-Ari’s work on
object oriented programming (Ragonis & Ben-Ari, 2005). A misconception is
a mistaken idea or view resulting from a misunderstanding of something. By
“difficulty” we mean the empirically observed inability to do something. It is
possible that a student exhibits a difficulty due to an underlying misconception
(possibly one already listed here or one so far unidentified). A difficulty might
also result because the student lacks some skill or knowledge.

We have built a tutorial that addresses those misconceptions and trains
students on avoiding them. The tutorial features code writing questions. It trains
students in part through feedback generated by a semantic code analyzer that
detects misconceptions in the students’ answers to the practice exercises. To
help assess our work, we have designed a set of questions that could be used as
a pre-test or post-test to measure those misconceptions. We have designed
a rubric for each question to match possible answers to misconceptions.

Our goal is to answer the following research questions:

(1) What is the effect of forcing students to practice more programming
exercises built to address misconceptions regarding recursion on binary
trees on student performance?

(2) What is the effect of warning students about their misconceptions on
student performance for this topic?

2. Related work

2.1. Recursion

In our previous work Hamouda, Edwards, Elmongui, Ernst, and Shaffer (2017) we
documented prior literature on the teaching of recursion. For more details, see
the literature review section there. Some major works include Chaffin, Doran,
Hicks, and Barnes (2009); Ginat and Shifroni (1999); Scholtz and Sanders (2010);
Tessler, Beth, and Lin (2013); Wilcocks and Sanders (1994) and Tessler et al.
(2013). We note that none of these studies adopted the pedagogical model of
providing an interactive tutorial combined with practice on programming
exercises that address recursion in binary trees misconceptions with automated
assessment and feedback to the students. The only work that we are aware of
related to recursion in binary trees was by Murphy et al. (2015). They conducted
a goal-plan analysis to find the plans used by students when writing a recursive

2 S. HAMOUDA ET AL.

method to count the number of nodes that have exactly one child in a Binary
Search Tree. Analysis of student answers showed that the most common errors
for the tree traversal goal were missing and malformed base cases. Even some
students who did not have difficulty with base cases would misplace calcula-
tions and miss recursive calls. Murphy et al. found their data to be useful for
designing questions. This work does not identify or correct specific misconcep-
tions in binary trees. Instead, it is related to general difficulties in writing
a recursive method, like writing a correct base case or recursive call. Previous
work on finding and addressing misconceptions related to recursion in binary
trees was limited. However, there have been efforts to find and address mis-
conceptions related to other CS topics. Karpierz and Wolfman (2014)) report an
initial effort to determine misconceptions and design a CI for Binary Search
Trees and Hash Tables. They focused on iterative methods rather than recursion.
The authors found student misconceptions by showing exam responses to nine
instructors, with the goal to understand how an expert recognises something
important that novices do not. The authors also reviewed more than 200 exam
problems along with project code to determine the most difficult problems.
They interviewed 25 students who each solved two questions while thinking
aloud. The authors found three main topics where students hold misconcep-
tions: the possibility of duplicates in BSTs, conflation of Heaps and BSTs, and
hash table resizing. The authors designed three multiple choice questions to
address those misconceptions.

2.2. Misconceptions and concept inventories

There is limited previous work on finding and addressing misconceptions
related to recursion in binary trees was limited. However, there have been
efforts to find and address misconceptions related to other CS topics.

Karpierz and Wolfman (2014) report an initial effort to determine misconcep-
tions and design a Concept Inventory for Binary Search Trees and Hash Tables.
A Concept Inventory (CI) is a test that can classify an examinee as either some-
one who thinks in accordance with accepted conceptions on a body of knowl-
edge or in accordance with common misconceptions (Adams & Wieman, 2011;
Rowe & Smaill, 2007). Karpierz and Wolfman focused on iterative methods
rather than recursion. The authors found student misconceptions by showing
exam responses to nine instructors, with the goal to understand how an expert
recognises something important that novices do not. The authors also reviewed
more than 200 exam problems along with project code to determine the most
difficult problems. They interviewed 25 students who each solved two questions
while thinking aloud. The authors found three main topics where students hold
misconceptions: the possibility of duplicates in BSTs, conflation of Heaps and
BSTs, and hash table resizing. The authors designed three multiple choice
questions to address those misconceptions.

COMPUTER SCIENCE EDUCATION 3

Kaczmarczyk, Petrick, East, and Herman (2010) document student misconcep-
tions in a CS1-level programming course. Using a Delphi process (Dalkey &
Helmer, 1963), the authors’ pool of experts determined 30 concepts that they
think are the most difficult in CS1 programming. From these the authors
selected ten concepts as their initial focus of interest. They are: memory
model, references and pointers, primitive and reference type variables, control
flow, iteration and loops, types, conditionals, assignment statements, arrays,
and operator precedence. The authors designed a test of 18 questions covering
the concepts of interest. In order to make sure that the results are not problem
dependent, each concept was covered in questions with at least two different
variations. The authors conducted student interviews to help them understand
student misconceptions regarding the targeted concepts. Eleven undergradu-
ate students participated in the interviews. These students were either currently
or recently enrolled in the CS1 course. Each interview lasted about an hour and
was audio and video recorded. In the interviews, each student was asked to
solve questions for all ten concepts. The purpose of the interview was to reveal
the misconceptions of the students and validate the expert pool’s conclusions
about the difficult concepts. The authors analyzed the student interviews and
described in detail the misconceptions found in memory model representation
and default value assignment of primitive values.

Danielsiek, Paul, and Vahrenhold (2012) described their first steps towards
building a concept inventory (CI) for Algorithms and Data Structures. Their
results were based on expert interviews and the analysis of 400 exams to
identify the core concepts that are considered to be associated with misconcep-
tions. They reported a pilot study to verify misconceptions previously reported
in the literature, and to identify additional misconceptions. They have then
wrote an initial instrument to detect misconceptions related to algorithms
and data structures (Paul & Vahrenhold, 2013). They presented the results
from a second study that aimed at assessing first-year student misconceptions.
Their second study confirmed findings from the previous small-scale studies,
but additionally broadened the scope of the topics.

Ragonis and Ben-Ari (2005) presented an initial effort to identify misconcep-
tions and difficulties in object-oriented programming (OOP). The authors gath-
ered data during two academic years from students studying OOP in tenth
grade CS. The data gathered included home works, lab exercises, tests, and
projects. They used these data to identify a comprehensive categorized list of
misconceptions and difficulties in OOP understanding. One novel aspect of this
work is the reporting of difficulties in addition to misconceptions.

Taylor et al. (2014) presented a survey paper on Computer Science concept
inventories. It includes a recommendation to build CIs for topics that should
evaluate student’s ability to engage in processes such as code analysis, program
design, program modification, and testing, as these aspects of learning are

4 S. HAMOUDA ET AL.

difficult to assess. Similarly, Zingaro, Petersen, and Craig (2012) notes that it is
hard to evaluate traditional code writing exercises.

2.3. Automated assessment of programming exercises

Previous research has shown that automated assessment of programming
exercises is beneficial for both students and instructors (Laakso, Salakoski, &
Korhonen, 2005; Saikkonen, Malmi, & Korhonen, 2001). Saikkonen et al.
(2001) implemented Scheme-robot for assessing programming exercises
written in the functional programming language Scheme. Scheme-robot
assesses individual procedures instead of complete programs and provides
feedback to the students. At the time of their publication, the system had
been used in an introductory programming course with some 350 students
for two years. Students practiced five exercises on average per week without
putting work on the instructor to correct their answers. Also, students got
immediate feedback on their answers, which helped them to learn from their
mistakes. The authors conducted a survey showing that 80% of the students
thought that automatic assessment, in general, is a good or an excellent
idea.

Laakso et al. (2005) studied the feasibility of automatically assessed exercises.
The authors recommend using both in-class and automatically assessed exer-
cises instead of using only one of these.

There are multiple approaches used for automated assessment of program-
ming exercises in general. These include output-based (also known as dynamic),
static, and trace-based assessment.

2.3.1. Output-based program assessment
Output-based program assessment runs a program against test cases, then
compares the output of the student’s code against output from amodel answer.
An example of output-based testing is unit testing. unit testing is a level of
software testing where individual components of a software are tested. The
purpose is to validate that each unit of the software performs as designed.
A unit is the smallest testable part of any software. It usually has one or a few
inputs and usually a single output. In procedural programming, a unit may be an
individual program or function. In object-oriented programming, the smallest
unit is a method which belongs to a class.

There has been much work on output-based program assessment. For exam-
ple, Blumenstein, Green, Nguyen, & Muthukkumarasamy (2004); Helmick (2007);
Karavirta and Ihantola (2010); Llana, Martin-Martin, Pareja-Flores, and
Velázquez-Iturbide (2014); Longo, Sterbini, and Temperini (2009); Saikkonen
et al. (2001) all implemented an output-based approach using unit testing to
evaluate student code.

COMPUTER SCIENCE EDUCATION 5

Blumenstein et al. (2004); Helmick (2007); Longo et al. (2009); Saikkonen et al.
(2001) describe non-web-based systems, whereas Karavirta and Ihantola (2010);
Llana et al. (2014) present web-based. systems. Llana et al. (2014) evaluate
student answers on the server side, whereas Karavirta and Ihantola (2010)
evaluate student answers on the client side.

2.3.2. Static assessment
Static assessment assesses the student’s code without running it. The goal is to
find if the code fulfills some quality metrics (e.g. variable naming, comments,
good programming practice).

Static assessment attempts to measure code quality, find bugs, and ensure
that the student’s answer is following good programming techniques. Truong,
Roe, and Bancroft (2004) target fill-in-the-blank problems, where a student is
asked to complete a piece of code that has missing statements. Their work aims
to assess code quality, not correctness. Software metrics were used to assess the
quality of the student’s code. A drawback of the proposed approach is that the
similarity check considers only the outline of a solution and not its details.

2.3.3. Trace-based program assessment
Trace-based assessment runs the program to make sure that certain variable
values/states are changing according to the requirements. There are multiple
ways of doing a trace-based assessment based on the assessment requirements.
Trace-based assessment is more challenging than output-based assessment
because many variations may exist in a student program that satisfies the
requirements specified in the problem statement. In trace-based program
assessment the code must pass first the output-based program test, then pass
the trace-based test. Several systems (Gerdes, Jeuring, & Heeren, 2010;
Taherkhani, Malmi, & Korhonen, 2008; Thorburn & Rowe, 1997; Xu & Chee,
2003) use trace-based program assessment. But this approach is more complex.
Xu and Chee (2003) automated the diagnosis of student programs for program-
ming tutoring systems. The main techniques presented are program standardi-
zation and semantic-level program matching. This is done to compare the
student’s answer to a model program.

Gerdes et al. (2010) assess student code by matching it to a model answer to
ensure that the student’s code is following good programming techniques. This
system categorizes student code into one of four predefined categories (good,
good with modifications, imperfect, and incorrect), which reflects whether it
follows proper programming techniques. This system does not provide feed-
back to students to show the problems in their code.

The semantic code analyzer implemented in our work first does output-based
assessment then static assessment to make sure that not only the output is
correct but also the code written to produce this output is free of
misconceptions.

6 S. HAMOUDA ET AL.

3. Identifying misconceptions

We have not found any prior research that explicitly discusses student miscon-
ceptions in the context of recursion in binary trees. Karpierz and Wolfman (2014)
attempt to identify student misconceptions related to binary trees, but not in
recursive functions. We have conducted student interviews and analyzed stu-
dent answers to questions to come up with a list of the common misconcep-
tions for this topic.

3.1. Student interviews

Beginning with the Fall 2014 offering of a Data Structures and Algorithms
(DSA) course, we have reviewed midterm exam answers. We asked students
to write a recursive function that, given the root to a Binary Search Tree and
a key, returns the number of nodes having key values less than K. We selected
a pool of students who had answered the question incorrectly or inefficiently
and requested an interview. Four students agreed to participate. We tried to
determine why they solved the question incorrectly or inefficiently, and how
we can help them to avoid these misconceptions. The interview questions
and the transcript from the interviews can be found in Appendix A. We
conclude from the interviews that the main reason for misconceptions is
lack of practice with appropriate feedback that consistently warns the stu-
dent about their misconceptions. That was our inspiration for building
a binary tree recursion tutorial, with semantic code analysis to provide this
kind of feedback.

3.2. Student exam response analysis

We analyzed student answers to test questions and student responses to an
automatically assessed programming exercise on recursion in binary trees. We
have analyzed more than 600 responses to binary tree recursive function writing
questions given to students over three semesters (Spring 2013, Fall 2013 and
Spring 2014) in the pre-test, post-test, mid-term, or final exams of a CS3 level
Data Structures and Algorithms course.

Appendix C shows the questions that we have used to find student miscon-
ceptions related to recursion in binary trees. Each question rubric is tagged to
the list of misconceptions and difficulties. The rubrics are shown in Tables C1,
C2, C4 and C5. We assume that the student solving the test should already be
proficient in basic recursion as taught in the prerequisite course, so we limit our
rubrics to misconceptions related to recursion in binary trees. Through analyz-
ing student answers to recursion in binary tree questions, we found that
students do express misconceptions related to recursion in binary trees more
than those related to basic recursion. We counted how many times an answer

COMPUTER SCIENCE EDUCATION 7

was not correct due to one of the twelve misconceptions related to basic
recursion discussed in [Anomynized]. We found that roughly 30% of the
wrong answers were due to problems related to understanding basic recursion,
while the other 70% were due to misconceptions related to recursion in binary
trees.

We have also analyzed more than 5200 attempts from 640 students in three
institutions over three semesters (Spring 2013, Fall 2013 and Spring 2014) on an
automatically assessed programming exercise on recursion in binary trees. The
programming exercise asks the students to write a recursive function to count
the number of leaf nodes in a given binary tree. For all the questions and
exercises, the analysis was done manually by one of the authors who had
more than eight years of teaching experience for recursion in binary trees. The
instructor looked at each student answer or response and recorded the problem
with the answer. Then the instructor viewed all the problems recorded to find
a repeating pattern. From that, common misconceptions and difficulties
encountered by students when writing functions that involve using recursion
to traverse a binary tree were found.

We can identify differences between the misconceptions related to recursion
in binary trees and themisconceptions that we identified for basic recursion. Most
of the misconceptions related to binary trees do not necessarily lead to wrong
outputs (i.e. the resulting function will pass the unit tests). Instead, many of these
misconceptions tend to relate to code complexity or algorithmic inefficiency.

3.3. Common misconceptions and difficulties

The following is a list of the common misconceptions and difficulties found. We
give each one an identifying tag for use in tables presented later.

(1) In any recursive function that traverses a binary tree, we must explicitly
check if the children of the current node are null or not before making the
recursive call. [childIsNull]

Example: Given the root to a Binary Tree, the function finds the depth
of the binary tree. The depth of a binary tree is the length of the path to
the deepest node. An empty tree has a depth of 0, and a tree with a root
node only has a depth of 1 and so on.

int btDepth(BinNode root) {

if (root = = null)

return 0;

//Misconception:

if (root.left() = = null || root.right = = null)

return 1;

else {

8 S. HAMOUDA ET AL.

return 1 + Math.max(btDepth(root.left()),

btDepth(root.right()));

}

}

(2) In any recursive function that traverses a binary tree, if we check the
current node’s value, then we have to check its children’s values explicitly.
[childCheckValue]

Example: Given the root to a Binary Search Tree (BST) and a value “key”,
function bstsmallCount returns the number of nodes having values
less than key. It should visit as few nodes in the BST as possible.

int bstsmallCount(BinNode root , int key) {

if(root = = null)

return 0;

if((Integer)root.element() < key)

return 1 + bstsmallCount(root.left(),key)

+ bstsmallCount(root.right(),key)

//Misconception

if((Integer)root.left().element() < key)

return 1 + bstsmallCount(root.left().left(),key)

+ bstsmallCount(root.left().right(),key)

else

return bstsmallCount(root.left(), key);

}

(3) In any recursive function that traverses a binary tree, we have to explicitly
check whether the current node is a leaf or not to terminate the recursive
function. [rootIsLeaf]

Example function btDepth:

int btDepth(BinNode root) {

if (root = = null)

return 0;

//Misconception

if(root.isLeaf() = = true)

return 0;

else {

return 1 + Math.max(btDepth(root.left()),

btDepth(root.right()));

}

COMPUTER SCIENCE EDUCATION 9

}

(4) In any recursive function that traverses a binary tree, we do not need to
check if the root is Null. [rootIsNotNull]

Example function btDepth:

int btDepth(BinNode root) {

//Missing base case to check if the root equals null

return 1 + Math.max(btDepth(root.left()),

btDepth(root.right()));

}

}

(5) [Difficulty] In a recursive function that traverses a BST, we have to traverse
the whole tree regardless of the aim of the traversal. (For example, when
searching for the minimum value in the tree, the student checks the right
subtree.) [BSTMinCheckRight]

Example function bstsmallCount:

int bstsmallCount(BinNode root , int key) {

if(root = = null)

return 0;

//Difficulty: missed checking the value of the key to

traverse

//the left tree if the key is smaller than the root

value

return 1 + bstsmallCount(root.left(),key)

+ bstsmallCount(root.right(),key)

}

(6) [Difficulty] In a recursive function that traverses a BST, we can miss
traversing critical parts of the tree. (For example, when searching for
the minimum value in the tree, the student sometimes or always fails to
search the left subtree.) [BSTMinNoCheckLeft]

Example: For bstsmallCount:

int bstsmallCount(BinNode root , int key) {

if(root = = null)

return 0;

//Difficulty: missed checking the left subtree

return 1+ bstsmallCount(root.right(),key)

}

Note that only Misconception 4 and Misconception 6 result in a function that
gives a wrong answer (and then only if the initial call is made with a null tree).

10 S. HAMOUDA ET AL.

However, it is essential for students to learn to avoid unnecessary code com-
plexity. Otherwise, they will find it difficult or impossible to write more compli-
cated recursive functions, such as operations on advanced data structures like
2–3 trees.

4. BTRecurTutor: an advanced recursion tutorial

In Hamouda, Edwards, Elmongui, Ernst, and Shaffer (2018), we described an
interactive tutorial with practice exercises to teach basic recursion. Based on this
experience, and realizing that even students with a good understanding of basic
recursion still struggle with writing recursive methods on trees that both work
and are efficient, we were inspired to develop a new tutorial aimed at teaching
these more advance recursion skills. We call this BTRecurTutor. BTRecurTutor
directly attempts to overcome the misconceptions that students often have. It is
a significant expansion of material originally appearing in Shaffer (2011), but
which did not in its original form properly address typical student misconcep-
tions. BTRecurTutor features programming exercises that help students to
practice recursion in binary trees. A key feature of this tutorial is that we
implemented semantic code analysis that detects a student’s misconceptions
from their answer, and provides appropriate feedback about the misconception
encountered.

BTRecurTutor is presented to users as a chapter (where a chapter is defined as
a series of modules) within the OpenDSA eTextbook system. Figure 1 shows
BTRecurTutor as Chapter 7 in the eTextbook for a post-CS2 course on Data
Structures and Algorithms (named CS3114 in the figures). Examples of modules
from BTRecurTutor are shown in Figures 2 and 3.

We initially created our own platform for implementing automated assess-
ment for programming exercises with semantic code analysis, which was used
in Spring 2016. Then we migrated all of these exercises to another platform,
Code Workout (Buffardi & Edwards, 2014),, which did not initially support
semantic code analysis; this was used in Fall 2016. More recently, we re-
implemented static analysis of code support for detecting misconceptions
within Code Workout, which is used currently. This is equivalent to the original
system that was used by students in Spring 2016.

Figure 2 shows a tutorial module with example code at the top of the page,
a visualization, and a code exercise. This exercise gives the student a problem
statement and a method signature, and the student must write the method body
to solve the problem. The feedback shown on the right side of the exercise is the
result of running the code against test cases. This is the version that was used by
Fall 2016 students. It does not do semantic code analysis. Figure 4 is another
example of an exercise used in Fall 2016. This exercise appears also at the end of
the Figure 3. Figure 3 shows an example of how the text and the visualizations

COMPUTER SCIENCE EDUCATION 11

Figure 1. BTRecurTutor in the CS3114 eTextbook.

12 S. HAMOUDA ET AL.

are presented to the student. Figure 5 shows an example of an exercise that does
both output-based feedback and semantic analysis, as used in Spring 2016.

4.1. Tutorial content

The tutorial content was reviewed and refined by four instructors. Each of the
instructors had more than ten years of experience in teaching recursion in
binary trees. The tutorial is divided into the following modules.

(1) Binary Tree as a Recursive Data Structure: Shows how we view a binary
tree as a recursive data structure, and how that naturally leads to recur-
sive implementations for the operations done on the binary tree.

Figure 2. An example of a programming exercise in BTRecurTutor.

COMPUTER SCIENCE EDUCATION 13

(2) Binary Tree Traversals: Shows different ways to enumerate all binary tree
nodes. It covers preorder, inorder and, postorder traversals.

(3) Implementing Tree Traversals: Shows the detailed steps needed to write
a recursive function that traverses a binary tree. It covers how to write
a base case, its action, a recursive call and its action, all in the context of
binary tree traversals.

(4) Information Flow in Recursive Functions: Illustrates how to handle the
different types of information flow in a recursive function that traverses
a binary tree. The module presents different types of information flow:
local (no flow), passing down information, collect and return information
upwards, and combinations of these.

(5) Binary Search Trees: Introduces the Binary Search Tree. It also teaches
(using visualizations and follow-up proficiency exercises) how to search,
insert, and remove a value in a BST.

(6) Binary Tree Guided Information Flow: Covers guided information flow,
which is most relevant to operations on BSTs. It shows how when writing
a recursive method to solve a problem that requires visiting a subset of

Figure 3. Example of a BTRecurTutor lesson (module) with an algorithm visualization (in the
form of a slideshow).

14 S. HAMOUDA ET AL.

the nodes in a BST (such as a range query), to make sure that we are
visiting the required nodes (no more and no less).

(7) Multiple Binary Trees: Practice exercises that ask the student to imple-
ment recursive functions that perform operations on two binary trees.

Figure 4. Example of programming exercise without semantic analyzer feedback.

Figure 5. Example of feedback from semantic code analysis.

COMPUTER SCIENCE EDUCATION 15

(8) Hard Information Flow Problems: Shows an example of how to test if
a given tree is a BST. In this example, the solution is not based on purely
local information, but instead depends on passing relevant information
down the tree.

4.1.1. Visualizations
In order to provide explicit instruction to combat common misconceptions, we
added the following visualizations to OpenDSA’s binary trees chapter.

(1) Sum on a binary tree: Focuses on the abstraction of recursion. This
visualization uses the delegation process discussed in Edgington (2007).
It shows an example of how to compute the sum of the values of all the
nodes in a binary tree by delegating the task to two friends.

(2) BT Common Mistakes: Shows, using code examples, the common mis-
conceptions that students encounter when writing a recursive function
that traverses a binary tree.

(3) BST Common Mistakes: Traces an example of a recursive function on
a BST to show the common mistakes that students display. It shows
situations where one can benefit from BST properties when writing
a recursive function to traverse fewer nodes.

4.1.2. Programming exercises
All programming exercises in this tutorial ask a student to write a full function
that performs a certain task. Figure 4 shows an example of a programming
exercise. The programming exercises train the student on different types of
information flows, or how to deal with multiple binary trees. The programming
exercises fall into the following categories.

(1) Local: This type of traversal involves performing a local operation on each
node in the tree. Such tasks need no information flow between the binary
tree nodes, they merely need to traverse the tree, perhaps in some
particular order.

(2) Passing Down Information: This type of traversal involves passing some
information to nodes during the traversal process.

(3) Collect and return: This type of traversal requires that we communicate
information back up the tree to the caller.

(4) Combining Information Flows: This type of traversal requires both that
information be passed down, and that information be passed back.

(5) Guided: This type of traversal should not visit every node in the tree. This
means that the recursive function is making some decision at each node
that sometimes allows it to avoid visiting one or both of its children. The

16 S. HAMOUDA ET AL.

decision is typically based on the value of the current node. Many pro-
blems that require information flow on BSTs are considered to be guided.

(6) Multiple Binary Trees: This type of problem involves operations on more
than one binary tree.

(7) Appendix B, Table B1 shows a detailed description of the exercises that
are provided in BTRecurTutor.

5. Semantic code analysis

BTRecurTutor uses semantic code analysis to detect misconceptions related to
recursion in binary trees in a student answer, and provides detailed feedback on
the misconception that was displayed. If the student’s code compiles success-
fully, then the infrastructure checks if the output is correct or not. If the output is
correct, then the semantic code analyzer is called. The semantic analyzer is
passed the student’s code and the exercise name. The semantic code analyzer
checks a manually predefined set of problem-specific misconceptions. If the
semantic code analysis finds evidence of a misconception, then the answer is
considered incorrect, and feedback from the semantic code analysis is shown to
the student.

For example, if the exercise asks to find if a certain value exists in a given tree,
the following will be checked by the semantic code analysis:

(1) Does the student check if the root is null? This is required to pass all test
cases successfully.

(2) Does the student explicitly check on the child(ren) value(s)? Such checks
are unnecessary for this problem, and the student should be told so.

(3) Does the student explicitly check if the child(ren) is (are) null? Such
a check is redundant for this problem due to (1), and the student should
be told so.

For exercises on BSTs, the semantic code analyzer checks if the student
traverses the whole tree when this is not appropriate. For example, if the aim
of traversal to find the minimum value in a BST, then the right sub-tree should
not be traversed at any node.

In the post-testing phase, feedback is sent back to the client, which is then
displayed to the student. Semantic code analysis is implemented for 15 binary
tree programming exercises.

The semantic code analyzer can detect any of the following misconceptions:

(1) Unnecessarily checks if the children of the current node are null or not.
(2) Unnecessarily checks the children values whenever checking the current

node’s value.

COMPUTER SCIENCE EDUCATION 17

(3) Unnecessarily checks whether the current node is a leaf or not to termi-
nate the recursive function.

(4) Missing a check to see if the root is null.
(5) In a recursive function that traverses a BST, process sub-trees that cannot

contain nodes with the target property. For example, when searching for
the minimum value in a BST, the function should not check the right
subtree. Another example, when doing range query, the function should
not automatically visit all children of a node.

(6) In a recursive function that traverses a BST, miss processing sub-trees that
contain nodes with the target property. For example, when searching for
the minimum value in the tree, sometimes (or always) fail to search the
left subtree. Or when searching for all values less than a target value, it
would be wrong to never check the right child of any node.

Detailed feedback is provided to the student based on the misconception(s)
displayed in her response to the programming question. Figure 5 shows an
example of the detailed feedback provided from the semantic code analysis.

6. Experiments

In this section, we present the results from our evaluation of the use of
BTRecurTutor in a post-CS2 DSA course, referred to as CS3114. We compare
the outcomes of a control group (given without using BTRecurTutor) against an
intervention group (sections of CS3114 that used BTRecurTutor). Specifically, we
compare the outcomes on the final exams for these sections. The control groups
and the experimental groups were taught by the same instructor in the same
style and same teaching strategies. The instructor has more than 30 years of
teaching experience. The instructor emphasised on the misconceptions for the
control and experimental groups.

6.1. Control and experimental groups

The students of the control and experimental groups were students enrolled in
Data Structures and Algorithms at [anonymous]. We have two control groups
and two experimental groups (details shown in Table 1). The two control groups
were enrolled during the semesters Fall 2011 (107 students) and Fall 2012 (57

Table 1. Control and experimental groups.
Group N Tutorial Status

Fall 2011 (Control 1) 107 Textual content
Fall 2012 (Control 2) 57 Textual content
Spring 2016 (Semantic Analysis) 176 15 practice exercises, semantic analysis
Fall 2016 (Plain Exercises) 192 15 practice exercises, no semantic analysis

18 S. HAMOUDA ET AL.

students). Both groups had not used our binary tree tutorial and had not been
assigned binary tree recursion programming exercises. The existing tutorial in
those semesters had only textual content copied from the reference book used
in the course (Shaffer, 2011).

The first experimental group were students enrolled during Spring 2016 (176
students) who used BTRecurTutor, including the programming exercises with
the semantic analysis feature (Figure 5). The second experimental group
included students enrolled in the Fall 2016 semester (192 students). This
group used the binary tree tutorial with the programming exercises, but with-
out the semantic analysis feature (Figure 4). (This loss of the semantic analysis
support was due to switching from our original programming exercise system to
Code Workout, which at that time did not include the semantic analysis support
which checks for students misconceptions and give a feedback about it. Instead,
Code Workout infrastructure just checked for the correctness of the function
output against a set of test cases without checking the misconceptions in the
code.) Both experimental groups were assigned all 15 programming practice
exercises as graded assignments.

6.2. Evaluation question

The following question was used as an assessment for student understanding of
recursion in binary trees. The question was given to the students as a part of the
final exam for all the experimental and control groups. The question measures
all the misconceptions related to the topic of recursion in binary trees.

Write a recursive function named range that, given the root to a Binary Search Tree
(BST), key value min, and key value max, returns the number of nodes having key
values that fall between min and max. Function range should visit as few nodes in the
BST as possible. Function range should have the following prototype:

int range(BinNode root, Key min, Key max)

The evaluation question, along with the rubric showing the misconceptions
covered, are shown in Table C3.

6.3. Results

During Fall 2011, Fall 2012, Spring 2016, and Fall 2016, students were given the
same evaluation question on the final exam shown in Table C3. Course teaching
assistants graded the questions to a specific rubric that includes the items
shown in Table C3, with point deductions specified for each item. Care was
taken to keep grading consistent both within and across semesters.

Below, we have compared the student scores on the question between the
following pairs: Fall 2011 versus Fall 2012, Fall 2011 versus Spring 2016, Fall 2012

COMPUTER SCIENCE EDUCATION 19

versus Spring 2016, Fall 2011 versus Fall 2016, Fall 2012 versus Fall 2016, and
Spring 2016 versus Fall 2016.

Table 2 shows the results of the unpaired t-test comparing the student scores
for Fall 2011 (control) versus Fall 2012 (control). These two groups were given
the material in traditional textbook style: as prose, code snippets, and still
images. Practice for both groups consisted of a single paper homework exercise
to write a recursive tree traversal, similar to the exam question. The t-test shows
no statistically significant difference between the groups. This is the expected
result, indicating that different groups of students taking this class, when using
a traditional textbook, tend to get the same exam scores.

Table 3 shows the results of the unpaired t-test comparing the scores of the
binary tree recursion exam question for Control 1 (N = 107) versus Semantic
Analysis (N = 176).

Table 4 shows the results of the unpaired t-test comparing the scores of the
binary tree recursion exam question for Control 2 (N = 57) versus Semantic
Analysis (N = 176).

The results show a statistically significant improvement in the performance of
the experimental group (p = 0.0001).

Tables 5 and 6 show the results of the unpaired t-test comparing the
student scores for Fall 2011 and Fall 2012 (control) versus Fall 2016 (the
experimental group that had the tutorial with 15 programming exercises,
but without semantic analysis). The results show a statistically significant
improvement in the performance of the experimental group (p = 0.0001).

Table 2. A t-test comparing the scores of the binary tree recursion exam question for
control 1 (N = 107) versus control 2 (N = 57).

Control 1 Control 2

mean std dev. mean std dev. p-value

score 13.51 5.54 14.28 5.6 0.401

* = statistically significant

Table 3. A t-test comparing the scores of the binary tree recursion exam question for
control 1 (N = 107) versus semantic analysis (N =176).

Control 1 Semantic Analysis

mean std dev. mean std dev. p-value

score 13.51 5.54 18.81 3.07 0.0001*

* = statistically significant

Table 4. A t-test comparing the scores of the binary tree recursion exam question for
control 2 (N = 57) versus semantic analysis (N =176).

Control 2 Semantic Analysis

mean std dev. mean std dev. p-value

score 14.28 5.60 18.81 3.07 0.0001*

* = statistically significant

20 S. HAMOUDA ET AL.

These results are consistent with improved performance by students who used
BTRecurTutor.

Table 7 shows the results of the unpaired t-test comparing the student’s
scores for Spring 2016 which is the experimental group who had the tutorial
with 15 programming exercises with semantic analysis, versus Fall 2016 which is
the experimental group who had the tutorial with 15 programming exercises,
but without semantic analysis. The results show a statistically significant
improvement in the performance of the experimental group that used the
tutorial with the semantic analysis feature (p = 0.0001).

Table 8 summarizes all the results and the effect sizes. In Valentine and
Cooper (2003) and Cohen (2013), an effect size labelled small if it is below
0.20. It was suggested that a large effect size when it is above 0.80. Medium-
sized effects have values between 0.20 and 0.80. We found a large effect size
when comparing the experimental group who practiced the exercises that
supports semantic code analysis to the control groups. We found a medium
effect size when comparing the group who practiced the semantic code
analyzed exercises to the group who practiced the exercises that does not

Table 5. A t-test comparing the scores of the binary tree recursion exam question for
control 1 (N =107) versus plain exercises (N =192).

Control 1 Plain Exercises

mean std dev. mean std dev. p-value

score 13.51 5.54 16.39 4.77 0.0001*

* = statistically significant

Table 6. A t-test comparing the scores of the binary tree recursion exam question for
control 2 (N = 57) versus plain exercises (N =192).

Control 2 Plain Exercises

mean std dev. mean std dev. p-value

score 14.28 5.6 16.39 4.77 0.005*

* = statistically significant

Table 7. A t-test comparing the scores of the binary tree recursion exam question for
semantic analysis (N = 176) versus plain exercises (N =192).

Semantic Analysis Plain Exercises

mean std dev. mean std dev. p-value

score 18.81 3.07 16.39 4.77 0.0001*

* = statistically significant

Table 8. Summary of the results.
Groups Effect Size Result

Control 1 vs Control 2 N/A Not statistically significant
Semantic Analysis vs Controls 1.1 Statistically significant
Plain Exercises vs Controls 0.5 Statistically significant
Semantic Analysis vs Plain Exercises 0.6 Statistically significant

COMPUTER SCIENCE EDUCATION 21

support semantic code analysis. We found a medium effect size when com-
paring the group who practiced the exercises that does not support semantic
code analysis to the control groups. These results are consistent with
improved performance by students who used BTRecurTutor with program-
ming exercises and even better performance when used the programming
exercises with semantic code analysis that warns them about their
misconceptions.

Figure 6 summarizes the means for the Binary Tree question exam grade
across years.

6.4. Threats to validity

There are many factors that might be considered as threats to validity. We
attempt to address them in this section.

(1) Instructor: The control groups and the experimental groups were taught
by the same instructor in the same style and same teaching strategies.
This instructor does not teach the course every semester, and other
instructors use different exams. That is why the control and experimental
groups were 5 years apart. It is worth noting that teacher’s skills may well
change during any five-year period.

Figure 6. Binary tree exam question grade across years.

22 S. HAMOUDA ET AL.

(2) Material used for teaching: There was improvement in both the text-
book materials presentation (the tutorial), and also in the classroom
presentation to conform more closely to the tutorial content and the
lessons learned over time about misconceptions. An important finding of
our work is that a focus on misconceptions along with practice improves
the outcomes from the instruction. Another important and independent
finding is that giving better feedback on the quality of the student
solutions (the semantic analysis) provides additional improvements in
performance. The primary difference was the textbook/tutorial presenta-
tion with exercises for practice.

(3) Assessment: The exam given to the students in the control and experi-
mental groups were both paper-based exams where students cannot get
feedback from a compiler. This might make it harder to answer questions,
but both groups used this approach on the exam.

(4) Grading: When grading the exams, the graders were unaware of the
ongoing research study. A detailed rubric including the items shown in
Table C.3 was used, with specific point deductions specified. Cross-grader
variation is always possible, but does not appear likely in this relatively
controlled circumstance. In addition, final exams are not returned to
students, and the control and experimental groups where not taking
the exam in successive semesters. These facts both minimize the concern
that scores improved across years because students knew about the
questions in advance.

(5) Time-on-task: Nearly all students in the experimental groups completed
all exercises. These are given for homework credit, within the OpenDSA
framework. It uses a mastery-based approach, meaning that students can
repeat the exercises until they get them correct. As a result, few students
do not complete the exercises. This means that students in the experi-
mental group had more time practicing coding for binary trees, which
might been one of the factors enhancing the grades. In addition, adding
the semantic analyzer to the exercises provided a better feedback to the
students to understand what is the misconception they have in their
answers. In the version of exercises where no semantic analysis supported
the feedback is based on if the code output is correct or wrong. The
semantic code analyzer added quality to the time spent practicing. In
other words, the fact that students on their own will take insufficient time
to practice has itself been determined to be a problem with typical
instructional practice on recursion, and our tutorial helps to overcome
this problem by explicitly requiring this needed practice. We found in
prior work (Hamouda et al., 2018) that practicing basic recursion exercises
helps with learning basic recursion topics. As a side effect of its design
and delivery, students did spend more time with BTRecurTutor than
previous students spent with only textual content presented to them.

COMPUTER SCIENCE EDUCATION 23

Since our previous surveys of instructors (Hamouda et al., 2018) indicates
that they believe students do not spend enough time practicing recur-
sion, we view this as generally a positive outcome.

7. Conclusion

This paper presents our efforts to enhance the learning of recursion in binary
trees as it is typically taught post CS2. This is often cast in the form of recursive
operations on binary trees. First, we have identified the misconceptions that
students have in understanding recursion in binary trees through the analysis
of answers of recursion in binary tree questions and student interviews. Then,
we have designed a question to measure those misconceptions. We have
designed a rubric to match possible answers to misconceptions. Finally, we
built a tutorial that addresses those misconceptions and trains students to
avoid them. The tutorial features code writing questions. It trains the students
in part through feedback from a semantic code analyzer that detects mis-
conceptions in the students’ answers to the practice exercises. Our results
show an enhancement in student performance when using the tutorial with
the practice exercises (but no semantic analysis feedback), and even more
enhancement when using the same exercises with appropriate feedback
about the misconceptions detected in the answer provided.

We conclude that the best way to use BTRecurTutor to enhance student
performance on recursion is to allow students to practice advanced recur-
sion by solving the tutorial exercises. The results suggest that additional
practice with the tool improves performance. Beyond additional practice,
the semantic feedback enhances student performance even further.
However, further analysis is needed to understand what aspects of the
practice exercises on BTRecurTutor leads to the enhancement in student
performance. There are two distinct aspects of BTRecurTutor that might
affect the learning of recursion. One is that BTRecurTutor explicitly delivers
instruction aimed at teaching advanced recursion and overcoming mis-
conceptions. The other is that BTRecurTutor involves the extensive prac-
tice of advanced recursive skills, with writing recursive functions. Our
design is unable to distinguish the relationships between these effects.
However, given that providing feedback based on semantic analysis of
student’s exercise solutions results in a significant boost in improvement,
it seems likely that practice (even without feedback beyond correctness) is
likely to give a performance boost.

Disclosure statement

No potential conflict of interest was reported by the authors.

24 S. HAMOUDA ET AL.

Funding

This work was supported by the National Science Foundation [DUE-0836940, DUE-0937863,
and DUE-0840719];VT-MENA.

Notes on contributors

Sally Hamouda is an Assistant Professor of Computer Science at Rhode Island College. She
received her PhD from Virginia Tech. Dr. Hamouda's research area are Computer Science
Education and Data mining. She is interested in discovering student misconceptions in
different hard topics in CS and how to resolve them.

Stephen H. Edwards is a Professor and the Associate Department Head for Undergraduate
Studies in the Department of Computer Science at Virginia Tech, where he has been teaching
since 1996. He received his B.S. in electrical engineering from Caltech, and M.S. and Ph.D.
degrees in computer and information science from The Ohio State University. His research
interests include computer science education, software testing, software engineering, and
programming languages. He is the project lead for Web-CAT, the most widely used open-
source automated grading system in the world. Web-CAT is known for allowing instructors to
grade students based on how well they test their own code. In addition, his research group
has produced a number of other open-source tools used in classrooms at many other
institutions.

Hicham G. Elmongui is an Associate Professor, Department of Computer and Systems
Engineering, Faculty of Engineering, Alexandria University. His research interests lie in the
area of data engineering. Specifically, interested in query processing and optimization. Prof.
Elmongui is interested in security engineering and the embedding of security business rules
into the software development life cycle.

Jeremy V. Ernst is a Professor and Associate Dean for Research at Embry-Riddle University. He
specializes in research focused on dynamic intervention means for STEM education students
categorized as at-risk of dropping out of school. Dr. Ernst has teaching, advising, and research
experiences in various capacities at the postsecondary and secondary levels.

Clifford A. Shaffer is an Associate Department Head for Graduate Studies and Professor of
Computer Science at Virginia Tech. where he has been since 1987. He received his PhD from
University of Maryland in 1986. Over his career, Dr. Shaffer's research efforts have spanned
three major themes: Data structures and algorithms for spatial applications, integrated
problem-solving environments for engineering and science applications (most notably for
systems biology), and simulation and visualization for education (including Computer
Science, Statistics, and Geography). He has been PI or Co-PI for over $10,000,000 in research
funding. Dr. Shaffer has published nearly 200 journal and conference papers.

ORCID

Hicham G. Elmongui http://orcid.org/0000-0001-5947-7450

COMPUTER SCIENCE EDUCATION 25

References

Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to measure
learning of expert-like thinking. International Journal of Science Education, 33(9),
1289–1312.

Blumenstein, M., Green, S., Nguyen, A., & Muthukkumarasamy, V. (2004, June). An experi-
mental analysis of GAME: A generic automated marking environment. SIGCSE Bulletin, 36
(3), 67–71.

Buffardi, K., & Edwards, S. (2014). Introducing codeworkout: An adaptive and social learning
environment. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education, (SIGCSE’14) (pp. 724). Atlanta, Georgia.

Chaffin, A., Doran, K., Hicks, D., & Barnes, T. (2009). Experimental evaluation of teaching
recursion in a video game. In Proceedings of the 2009 ACM SIGGRAPH Symposium on
Video Games, (pp. 79–86). New Orleans, Louisiana.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge, New York
University, New York.

Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use
of experts. Management Science, 9(3), 458–467.

Danielsiek, H., Paul, W., & Vahrenhold, J. (2012). Detecting and understanding students’
misconceptions related to algorithms and data structures. In Proceedings of the 43rd acm
technical symposium on computer science education, (pp. 21–26). Raleigh, North Carolina.

Edgington, J. (2007, October). Teaching and viewing recursion as delegation. Journal of
Computing Sciences in the Colleges, 23(1), 241–246.

Gerdes, A., Jeuring, J., & Heeren, B. (2010, November). Using strategies for assessment of
programming exercises. SIGCSE Bulletin, 40(4), 441–445.

Ginat, D., & Shifroni, E. (1999). Teaching recursion in a procedural environment-how much
should we emphasize the computing model? In Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education,(SIGCSE’99) (pp. 127–131). New
Orleans, Louisiana.

Grissom, S., Murphy, L., McCauley, R., & Fitzgerald, S. (2016). Paper vs. computer-based exams:
A study of errors in recursive binary tree algorithms. In Proceedings of the 47th acm
technical symposium on computing science education, (pp. 6–11). Memphis, Tennessee.

Hamouda, S., Edwards, S., Elmongui, H., Ernst, J., & Shaffer, C. (2017). A basic recursion concept
inventory. Computer Science Education, 27(2), 121–148.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., & Shaffer, C. A. (2018, November).
Recurtutor: An interactive tutorial for learning recursion. ACM Transaction Computing
Education, 19(1), 1:1–1: 25. Retrieved from

Helmick, M. (2007). Interface-based programming assignments and automatic grading of java
programs. In Proceedings of the Twelfth Annual Conference on Innovation and Technology in
Computer Science Education, (ITiCSE’07) (p. 63–67). Dundee, Scotland.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student
misconceptions of programming. In Proceedings of the 41st acm technical symposium on
computer science education, (pp. 107–111). Milwaukee Wisconsin.

Karavirta, V., & Ihantola, P. (2010). Serverless automatic assessment of Javascript exercises.
Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer
Science Education, (ITiCSE’10) (p. 303). Ankara Turkey.

Karpierz, K., & Wolfman, S. (2014). Misconceptions and concept inventory questions for binary
search trees and hash tables. Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, (SIGCSE’14 (pp. 109–114). Atlanta Georgia.

26 S. HAMOUDA ET AL.

Laakso, M., Salakoski, T., & Korhonen, A. (2005). The feasibility of automatic assessment and
feedback. International Conference on Cognition and Exploratory Learning in Digital Age, (pp.
113–122). Porto, Portugal.

Llana, L., Martin-Martin, E., Pareja-Flores, C., & Velázquez-Iturbide, J. (2014). FLOP: A
user-friendly system for automated program assessment. Journal of Universal Computer
Science, 20(9), 1304–1326.

Longo, P., Sterbini, A., & Temperini, M. (2009). TSW: A web-based automatic correction system
for C programming exercises. Berlin, Heidelberg: Springer.

Murphy, L., Fitzgerald, S., Grissom, S., & McCauley, R. (2015). Bug infestation!: A goal-plan
analysis of CS2 students’ recursive binary tree solutions. Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, (pp. 482–487). Kansas City, Missori.

Paul, W., & Vahrenhold, J. (2013). Hunting high and low: Instruments to detect misconceptions
related to algorithms and data structures. Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, (pp. 29–34). Denver, Colorado.

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of oop
concepts by novices. Computer Science Education, 15(3), 203–221.

Rowe, G., & Smaill, C. (2007). Development of an electromagnetic courseconcept inventorya
work in progress. Proc. 18th conf. australian association for engineering (aace), Melbourne,
Australia.

Saikkonen, R., Malmi, L., & Korhonen, A. (2001). Fully automatic assessment of programming
exercises. Proceedings of the Sixth Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE’01), (pp. 133–136). Canterbury, United Kingdom

Scholtz, T., & Sanders, I. (2010). Mental models of recursion: Investigating students’ under-
standing of recursion. Proceedings of the Fifteenth Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE’10), (pp. 103–107). Ankara, Turkey.

Shaffer, C. (2011). Data structures and algorithm analysis in java (3rd ed.). Pearson: Dover
Publications.

Taherkhani, A., Malmi, L., & Korhonen, A. (2008). Algorithm recognition by static analysis and
its application in students’ submissions assessment. Proceedings of the Eighth International
Conference on Computing Education Research (Koli’08), (pp. 88–91). Koli, Finland.

Taylor, C., Zingaro, D., Porter, L., Webb, K., Lee, C., & Clancy, M. (2014). Computer science
concept inventories: Past and future. Computer Science Education, 24(4), 253–276.

Tessler, J., Beth, B., & Lin, C. (2013). Using cargo-bot to provide contextualized learning of
recursion. Proceedings of the Ninth Annual ACM Conference on International Computing
Education Research (ICER’13), (pp. 161–168). San Diego, California .

Thorburn, G., & Rowe, G. (1997, December). PASS: An automated system for program
assessment. Computer Education, 29(4), 195–206.

Truong, N., Roe, P., & Bancroft, P. (2004). Static analysis of students’ java programs. Proceedings
of the Sixth Australasian Conference on Computing Education, (pp. 317–325). Darlinghurst,
Australia.

Valentine, J. C., & Cooper, H. (2003). Effect size substantive interpretation guidelines: Issues in the
interpretation of effect sizes (pp. 1–7). Washington, DC: What Works Clearinghouse.

Wilcocks, D., & Sanders, I. (1994). Animating recursion as an aid to instruction. Computers and
Education, 23(3), 221–226.

Xu, S., & Chee, Y. (2003). Transformation-based diagnosis of student programs for program-
ming tutoring systems. IEEE Transactions on Software Engineering, 29(4), 360–384.

Zingaro, D., Petersen, A., & Craig, M. (2012). Stepping up to integrative questions on CS1
exams. Proceedings of the 43rd acm technical symposium on computer science education,
(pp. 253–258). Raleigh, North Carolina. doi:10.1145/2157136.2157215

COMPUTER SCIENCE EDUCATION 27

https://doi.org/10.1145/2157136.2157215

Appendix A. CS 3114 Interviews

A.1. The interview questions

(1) How confident are you about writing recursive functions?
(2) How confident are you about writing recursive programs related to binary trees and

traversals?
(3) What was the reason for the wrong answer on the recursion in binary tree mid-term

Question?
(4) Do you think that you have learned more about writing recursive functions since you

took the midterm?
(5) Do you think that you could now write this function correctly?

(a) If yes, how would you figure out a fix?
(b) If no, why could not you figure out a fix?

(6) What do you think could help you to understand the topic of recursive tree functions
better?

(7) Do you have any suggestions on enhancing the presentation of the binary trees chapter
in OpenDSA?

A.2. Subject Responses

Subject 1

The student usually uses OpenDSA to prepare for the midterms by reading the chapter and
then re-reading it one or two days before the midterm.

He thinks that understanding data structures is harder than understanding sorting.
He is generally comfortable with recursion. We asked how he would solve the program-

ming exercise to count the leaf nodes in a given tree. The student could not remember how
he approached it.

Reviewing his progress from tracking data stored in our database, we found that he had
made three attempts until he got the correct answer. However, his answer did unnecessary
checks that could be avoided. In every attempt, he tried to modify his code so that he can fix
the errors that appeared to him. His answer to the OpenDSA programming exercise shows
that he is not good at formulating the recursive case, nor the recursive call.

He reported that OpenDSA exercises about binary trees are too easy. He thinks that the
presentation of binary trees in OpenDSA should be enhanced by showing real applications.
He suggested that OpenDSA can have more difficult code-writing exercises on binary trees
and traversals.

After showing him his mid-term answer, he reported that the main reason for not getting
the correct answer for the binary tree exercise is not writing the base case correctly. However,
he was not sure how to fix his answer. He did not have any suggestions about how he could
enhance his understanding of binary trees, because he says that he did not study it well
enough.

Subject 2

She used OpenDSA to study for the mid-terms and used some of the OpenDSA examples,
definitions, data structures usages in her “cheat sheet” that students were allowed to bring to
the midterms. This subject had a year gap between taking CS2114 and CS3114 for a reason
related to a family emergency, and that is why she used to work alone in the projects. She
thinks that gap affected her performance in 3114, especially in her programming skills. Her

28 S. HAMOUDA ET AL.

first language is not English, that is why she thinks that she spends more time than her
classmates in reading and understanding the material and the terminologies. She said that
CS2114 is not doing an excellent job in preparing students for CS3114, and there is a gap
between them. She said that recursion is not well covered in CS2114, and that is why she
struggled in CS3114 on the topics that are related to recursion.

Her confidence level about writing recursive functions is 4 on a scale from 1 to 10. She said
that the practice exercises on trees and traversals are too easy. Our collected data show that
she made 15 attempts before getting the answer correct in the programming exercise. She
said she depended on the feedback she got from the programming exercise editor in
OpenDSA to fix her errors, and also she has looked on the internet to find out how to fix
her problems.

On reviewing her midterm answer to the programming exercise, she could not figure out why
her answer was wrong and how to fix it. She said she learned more about recursion after the first
midterm. She suggested that OpenDSA should have more practice and visualizations for the tree
traversal topic to help the student understand it better.

Subject 3

The subject used OpenDSA and Google to study for the mid-terms. He generally likes to have
multiple sources to study from. He is pretty confident in writing general recursive functions and
recursive functions on trees. He thinks he is not a good test taker and that is why he missed the
answer to the binary trees programming exercise on the mid-term, as he left that question for the
last 5 minutes. On reviewing his midterm answer, he could figure out his errors. He reports that
recursion is easy. He thinks that adding more visualizations that show how a recursive function
works on some examples will be beneficial in understanding recursion. He suggests also adding
more programming exercises with different styles and tasks. He said that he uses a stack to trace
how a recursive function works. He generally avoides using recursion on problems that can be
solved in another way. He has two years of programming experience, and he thinks that OpenDSA
helps him to understand how recursion works. He says that OpenDSA is an excellent system to
learn from. He found that he had a problem in binary tree traversals in the recursion pre-test and
mid-term although he thinks that he does not have any problems. He made five attempts on the
OpenDSA programming exercise before getting the correct answer.

Subject 4

He uses OpenDSA to prepare for the mid-term. He uses Google as a studying resource, but
not for preparing for the mid-term. He reports that OpenDSA helped him a lot. He reports that
his understanding of recursion was enhanced by the CS3114 in-class explanations. He got
from the class that in order to understand recursion, you need to understand well how the
base case is working and avoid thinking about the details of the recursion. He thinks that
recursion was made much more straightforward in CS3114. He is confident in writing
recursive functions. When he was given his mid-term question, he was able to fix it quickly
as he had learned more about recursion after that mid-term. He thinks that the current
programming exercise on binary tree traversals is too easy and the reason why he made eight
attempts is that he misread it and then when he read it correctly it worked just fine. He thinks
that adding more complicated programming exercises would help better understanding of
binary tree traversals.

He feels comfortable about recursion. He mentioned that the trigger to understanding was
the explanation of recursion in class. In particular, he cited focusing on base cases and
simplifying what he pays attention to in writing the recursive function (not looking at too
many nodes).

COMPUTER SCIENCE EDUCATION 29

Appendix B. BTRecurTutor Practice Exercises Detailed Information

Appendix C. Test Questions

C.1. Pre-test Questions

1. Write a recursive function named bstMin that, given the root to a Binary Search Tree
(BST), returns a reference to the node that has the minimum value found in the passed
tree. Function bstMin should visit as few nodes in the BST as possible. Function bstMin
should have the following prototype:

BinNode bstMin(BinNode root)

The Correct Answer:

BinNode bstMin(BinNode root){

if (root = = null)

return null;

if (root.left() = = null)

return root;

return bstMin(root.left());

}

Table B1. Writing practice exercises detailed information in recursion in binary trees tutorial.
Exercise Name Description Category

Increment Increment all the values of the nodes of a binary tree by one Local
Count Leaf Count the number of Leaf Nodes in a binary Tree Collect and return
Depth Get the depth of a binary Tree Collect and return
Check Value Check on the existence of a given value in a binary tree Collect and return
Count Value Count the number of existences of a given value in a binary

tree
Collect and return

Sum All Sum all the values of the nodes in a binary tree Collect and return
Has Path Sum Check if any path from the root to a leaf has a given sum Collect and return
Get Difference Get the difference between the values on the left sub-tree and

the right sub-tree
Collect and return

Diameter Get the diameter of a given sub-tree Collect and return
CheckSum Check if for each node if the sum of its children is equals to its

value
Collect and return

Minimum Find the minimum in a binary search tree Guided
Small Count Count the number of existences of a node value less than

a given value in a binary search tree
Guided

Same Tree Check if the values in two given trees are the same Multiple Trees
Swaps Trees Swap the values of two given trees Multiple Trees
Structurally Identical Trees Check if two given trees are structurally identical Multiple Trees
Mirror Trees Check if the values in the nodes of two given trees are

mirrored
Multiple Trees

Table C1. Question item 1. Rubric.
Answer Misconception

Solution that access root.right() BSTMinCheckRight
Solution that does not access root.left() BSTMinNoCheckLeft
Solution that does not check if root = = null RootIsNotNull
Solution that checks on root.isLeaf() as the base case RootIsLeaf
Other ?

30 S. HAMOUDA ET AL.

2. Write a recursive function named btCheckVal that, given the root to a Binary Tree and
value, returns true if there is a node in the given binary tree with the given value, and
false otherwise. Function btCheckVal should have the following prototype:

boolean btCheckVal(BinNode root , int value)

The Answer:

boolean btCheckVal(BinNode root, int value) {

if (root = = null)

return false;

else {

if (root.element() = = value)

return true;

else

return btCheckVal(root.left(), value) ||

btCheckVal(root.right(), value);

}

}

C.2. Post-test Questions

(3) Write a recursive function named bstsmallCount that, given the root to a Binary Search
Tree (BST) and a value “”key” returns the number of nodes having values less than key.
Function bstsmallCount should visit as few nodes in the BST as possible. Function
bstsmallCount should have the following prototype:

int bstsmallCount(BinNode root , int key)

The Answer:

int bstsmallCount(BinNode root , int key) {

if(root = = null)

return 0;

if((Integer)root.element() < key)

return 1 + bstsmallCount(root.left(),key)

+ bstsmallCount(root.right(),key)

else

return bstsmallCount(root.left(), key);

}

Table C2. Question item 2. Rubric.
Answer Misconception

Solution that accesses the values of the root’s left or right children ChildCheckValue
Solution that checks if the root’s left or right children is null ChildIsNull
Solution that does not check if root = = null RootIsNotNull
Solution that checks on root.isLeaf() as the base case RootIsLeaf
Other ?

COMPUTER SCIENCE EDUCATION 31

(4) Write a recursive function named btDepth that, given the root, to a Binary Tree the
function finds the depth of the binary tree. The depth of a binary tree is the length of
the path to the deepest node. An empty tree has a depth of 0, and a tree with a root
node only has a depth of 1 and so on. Function btDepth should have the following
prototype:

int btDepth(BinNode root)

The Answer:

int btDepth(BinNode root) {

if (root = = null)

return 0;

else {

return 1 + Math.max(btDepth(root.left()),

btDepth(root.right()));

}

}

C.3. Evaluation Question

(5) Write a recursive function named range that, given the root to a Binary Search Tree
(BST), key value min, and key value max, returns the number of nodes having key values
that fall between min and max. Function range should visit as few nodes in the BST as
possible. Function range should have the following prototype:

int range(BinNode root, Key min, Key max)

The Answer:

int range(BSTNode root, int min, int max) {

if (root = = null)

Table C3. Question item 3. Rubric.
Answer Misconception

Solution that access root.right() in the else condition BSTMinCheckRight
Solution that does not access root.left() BSTMinNoCheckLeft
Solution that does not check if root = = null RootIsNotNull
Solution that checks on root.isLeaf() as the base case RootIsLeaf
Solution that access the values of the root’s left or right children ChildCheckValue
Solution that check if the root’s left or right children is null ChildIsNull
Other ?

Table C4. Question item 4. Rubric.
Answer Misconception

Solution that check if the root’s left or right children is null ChildIsNull
Solution that does not check if root = = null RootIsNotNull
Solution that checks on root.isLeaf() as the base case RootIsLeaf
Solution that misses a recursive call on the root.left() or the root.right() ?
Other ?

32 S. HAMOUDA ET AL.

return 0;

int result = 0;

if ((min ≤ (Integer)root.element()) &&

(max ≥ (Integer)root.element()))

result = result + 1;

if (min ≤ (Integer)root.element())

result + = range(root.left(), min, max);

if (max > (Integer)root.element())

result + = range(root.right(), min, max);

return result;

}

Table C5. Question item 5. Rubric.
Answer Misconception Deductions

Solutions that access root.right() unconditionally BSTMinCheckRight −8
Solutions that access root.left() unconditionally BSTMinNoCheckLeft −8
Solutions that do not check if root = = null RootIsNotNull −2
Solutions that check on root.isLeaf() as the base case RootIsLeaf −2
Solutions that access the values of the root’s left or right children ChildCheckValue −8
Solutions that check if the root’s left or right children are null ChildIsNull −4

COMPUTER SCIENCE EDUCATION 33

	Abstract
	1. Introduction
	2. Related work
	2.1. Recursion
	2.2. Misconceptions and concept inventories
	2.3. Automated assessment of programming exercises
	2.3.1. Output-based program assessment
	2.3.2. Static assessment
	2.3.3. Trace-based program assessment

	3. Identifying misconceptions
	3.1. Student interviews
	3.2. Student exam response analysis
	3.3. Common misconceptions and difficulties

	4. BTRecurTutor: an advanced recursion tutorial
	4.1. Tutorial content
	4.1.1. Visualizations
	4.1.2. Programming exercises

	5. Semantic code analysis
	6. Experiments
	6.1. Control and experimental groups
	6.2. Evaluation question
	6.3. Results
	6.4. Threats to validity

	7. Conclusion
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References
	Appendix A.CS 3114 Interviews
	A.1. The interview questions
	A.2. Subject Responses

	Appendix B.BTRecurTutor Practice Exercises Detailed Information
	Appendix C.Test Questions
	C.1. Pre-test Questions
	C.2. Post-test Questions
	C.3. Evaluation Question

