
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 06: Coordination

Edited by: Hicham G. Elmongui

Coordination: Clock synchronization Physical clocks

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)

Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50 cesium
clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.

2 / 35

Coordination: Clock synchronization Clock synchronization algorithms

Clock synchronization

Precision
The goal is to keep the deviation between two clocks on any two machines
within a specified bound, known as the precision π:

∀t ,∀p,q : |Cp(t)−Cq(t)| ≤ π

with Cp(t) the computed clock time of machine p at UTC time t .

Accuracy

In the case of accuracy, we aim to keep the clock bound to a value α:

∀t ,∀p : |Cp(t)− t | ≤ α

Synchronization

Internal synchronization: keep clocks precise
External synchronization: keep clocks accurate

3 / 35

Coordination: Clock synchronization Clock synchronization algorithms

Clock drift
Clock specifications

A clock comes specified with its maximum clock drift rate ρ.
F (t) denotes oscillator frequency of the hardware clock at time t
F is the clock’s ideal (constant) frequency⇒ living up to specifications:

∀t : (1−ρ)≤ F (t)
F
≤ (1 + ρ)

Observation
By using hardware interrupts we couple
a software clock to the hardware clock,
and thus also its clock drift rate:

Cp(t) =
1
F

∫ t

0
F (t)dt ⇒

dCp(t)
dt

=
F (t)

F

⇒∀t : 1−ρ ≤
dCp(t)

dt
≤ 1 + ρ

Fast, perfect, slow clocks

F
as

t c
lo

ck

P
er

fe
ct
 c
lo
ck

Slow
clock

Clock time, C

UTC, t

dC (t)p

dt
= 1

dC (t)p

dt
> 1

dC (t)p

dt
< 1

4 / 35

Coordination: Clock synchronization Clock synchronization algorithms

Detecting and adjusting incorrect times
Getting the current time from a time server

A

B

T1

T2 T3

T4

dTreq dTres

Computing the relative offset θ and delay δ

Assumption: δTreq = T2−T1 ≈ T4−T3 = δTres

θ = T3 +
(
(T2−T1) + (T4−T3)

)
/2−T4 =

(
(T2−T1) + (T3−T4)

)
/2

δ =
(
(T4−T1)− (T3−T2)

)
/2

Network Time Protocol

Collect eight (θ ,δ) pairs and choose θ for which associated delay δ was
minimal.

Network Time Protocol 5 / 35

Coordination: Clock synchronization Clock synchronization algorithms

Keeping time without UTC
Principle

Let the time server scan all machines periodically, calculate an average, and
inform each machine how it should adjust its time relative to its present time.

Using a time server
Time daemon

3:00 3:00

3:00

3:00

3:252:50

Network

3:00 0

-10

+25

3:252:50

3:05 +5

+15

-20

3:053:05

Fundamental
You’ll have to take into account that setting the time back is never allowed⇒
smooth adjustments (i.e., run faster or slower).

The Berkeley algorithm 6 / 35

Coordination: Logical clocks Lamport’s logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a→ b.
If a is the sending of a message, and b is the receipt of that message,
then a→ b
If a→ b and b→ c, then a→ c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

7 / 35

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.

8 / 35

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: example

Consider three processes with event counters operating at different rates

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m
1

m
2

m
3

m
4

P
1

P
2

P
3

m1

m2

m3

m4

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P adjusts2

its clock

P adjusts1

its clock

P1 P2 P3

70

76

61

69

77

85

9 / 35

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: where implemented

Adjustments implemented in middleware

Adjust local clock

Message is received

Adjust local clock

and timestamp message

Application sends message

Middleware sends message

Application layer

Middleware layer

Network layer

Message is delivered
to application

10 / 35

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: solution

Each process Pi maintains a local counter Ci and adjusts this counter
1 For each new event that takes place within Pi , Ci is incremented by 1.
2 Each time a message m is sent by process Pi , the message receives a

timestamp ts(m) = Ci .
3 Whenever a message m is received by a process Pj , Pj adjusts its local

counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes
Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

11 / 35

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Concurrent updates on a replicated database are seen in the same order
everywhere

P1 adds $100 to an account (initial value: $1000)
P2 increments account by 1%
There are two replicas

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Result
In absence of proper synchronization:
replica #1← $1111, while replica #2← $1110.

Example: Total-ordered multicasting 12 / 35

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution
Process Pi sends timestamped message mi to all others. The message
itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Example: Total-ordered multicasting 13 / 35

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded
b.

Concurrent message transmission
using logical clocks

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

14 / 35

Coordination: Logical clocks Vector clocks

Causal dependency

Precedence vs. dependency

We say that a causally precedes b.

b may causally depend on a, as there may be information from a that is
propagated into b.

15 / 35

Coordination: Logical clocks Vector clocks

Capturing causality

Solution: each Pi maintains a vector VCi

VCi [i] is the local logical clock at process Pi .

If VCi [j] = k then Pi knows that k events have occurred at Pj .

Maintaining vector clocks

1 Before executing an event Pi executes VCi [i]← VCi [i] + 1.

2 When process Pi sends a message m to Pj , it sets m’s (vector)
timestamp ts(m) equal to VCi after having executed step 1.

3 Upon the receipt of a message m, process Pj sets
VCj [k]←max{VCj [k], ts(m)[k]} for each k , after which it executes step 1
and then delivers the message to the application.

16 / 35

Coordination: Logical clocks Vector clocks

Vector clocks: Example

Ðï

Ðî

Ðí

øðôïôð÷

øïôïôð÷ øîôïôð÷ øíôïôð÷ øìôïôð÷

øìôîôð÷

øìôíôð÷

øìôíôî÷øîôïôï÷

³ï ³î ³í

³ì

Potential Causal Precedence

ts(m2) < ts(m4)

17 / 35

Coordination: Logical clocks Vector clocks

Vector clocks: Example

Ðï

Ðî

Ðí

øðôïôð÷

øïôïôð÷ øìôïôð÷øíôïôð÷øîôïôð÷

øîôîôð÷

øîôíôð÷

øîôíôï÷ øìôíôî÷

³ï ³î³í

³ì

Concurrent Events

ts(m2)≮ ts(m4) & ts(m4)≮ ts(m2)

18 / 35

Coordination: Mutual exclusion Overview

Mutual exclusion

Problem
A number of processes in a distributed system want exclusive access to some
resource.

Basic solutions

Permission-based: A process wanting to enter its critical section, or access a
resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the
token may proceed in its critical section, or pass it on when not
interested.

19 / 35

Coordination: Mutual exclusion A centralized algorithm

Permission-based, centralized

Simply use a coordinator

Request OK

Coordinator

Queue is
empty

P0 P1 P2

C

Request

No reply

P0 P1 P2

C
2

Release

OK

P
0

P
1

P
2

C

(a) (b) (c)

(a) Process P1 asks the coordinator for permission to access a shared
resource. Permission is granted.

(b) Process P2 then asks permission to access the same resource. The
coordinator does not reply.

(c) When P1 releases the resource, it tells the coordinator, which then replies
to P2 .

20 / 35

Coordination: Mutual exclusion A distributed algorithm

Mutual exclusion Ricart & Agrawala

The same as Lamport except that acknowledgments are not sent

Return a response to a request only when:

The receiving process has no interest in the shared resource; or
The receiving process is waiting for the resource, but has lower priority
(known through comparison of timestamps).

In all other cases, reply is deferred, implying some more local administration.

21 / 35

Coordination: Mutual exclusion A distributed algorithm

Mutual exclusion Ricart & Agrawala

Example with three processes

0

1 2

8

8

8 12

12

12

0

1 2

OK OK

OK

Accesses

resource

0

1 2

OK

Accesses

resource

(a) (b) (c)

(a) Two processes want to access a shared resource at the same moment.
(b) P0 has the lowest timestamp, so it wins.
(c) When process P0 is done, it sends an OK also, so P2 can now go ahead.

22 / 35

Coordination: Mutual exclusion A token-ring algorithm

Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed between them.
The one that holds the token is allowed to enter the critical region (if it wants
to).

An overlay network constructed as a logical ring with a circulating token

0 1 2 3

4567

Token

23 / 35

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

Principle

Assume every resource is replicated N times, with each replica having its own
coordinator⇒ access requires a majority vote from m > N/2 coordinators. A
coordinator always responds immediately to a request.

Assumption

When a coordinator crashes, it will recover quickly, but will have forgotten about
permissions it had granted.

24 / 35

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

How robust is this system?

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

The probability P[k] that k out of m coordinators reset during the same
interval is

P[k] =

(
m
k

)
pk (1−p)m−k

f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when m− f ≤ N/2, or, f ≥m−N/2.

The probability of a violation is ∑
N
k=m−N/2P[k].

25 / 35

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

Violation probabilities for various parameter values

N m p Violation
8 5 3 sec/hour < 10−15

8 6 3 sec/hour < 10−18

16 9 3 sec/hour < 10−27

16 12 3 sec/hour < 10−36

32 17 3 sec/hour < 10−52

32 24 3 sec/hour < 10−73

N m p Violation
8 5 30 sec/hour < 10−10

8 6 30 sec/hour < 10−11

16 9 30 sec/hour < 10−18

16 12 30 sec/hour < 10−24

32 17 30 sec/hour < 10−35

32 24 30 sec/hour < 10−49

What can we conclude?
In general, the probability of violating correctness can be so low that it can be
neglected in comparison to other types of failure.

If a process is denied access to a resource (getting < m votes), it will back off
for some randomly chosen time, and make a next attempt later.

26 / 35

Coordination: Election algorithms

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems the coordinator is chosen by hand (e.g. file servers). This
leads to centralized solutions⇒ single point of failure.

Teasers

1 If a coordinator is chosen dynamically, to what extent can we speak about
a centralized or distributed solution?

2 Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

27 / 35

Coordination: Election algorithms

Basic assumptions

All processes have unique id’s

All processes know id’s of all processes in the system (but not if they are
up or down)

Election means identifying the process with the highest id that is up

28 / 35

Coordination: Election algorithms The bully algorithm

Election by bullying

Principle

Consider N processes {P0 , . . . ,PN−1} and let id(Pk) = k . When a process Pk
notices that the coordinator is no longer responding to requests, it initiates an
election:

1 Pk sends an ELECTION message to all processes with higher identifiers:
Pk+1,Pk+2 , . . . ,PN−1.

2 If no one responds, Pk wins the election and becomes coordinator.

3 If one of the higher-ups answers, it takes over and Pk ’s job is done.

29 / 35

Coordination: Election algorithms The bully algorithm

Election by bullying

The bully election algorithm

Election

Electio
n

E
le

ctio
n

1

2

4

0

5

6

3

7

OK

OK

1

2

4

0

5

6

3

7

E
le

c
ti
o
n

E
le
ct
io
n

Election

1

2

4

0

5

6

3

7

OK

1

2

4

0

5

6

3

7

Coordinator

1

2

4

0

5

6

3

7

30 / 35

Coordination: Election algorithms A ring algorithm

Election in a ring

Principle

Process priority is obtained by organizing processes into a (logical) ring.
Process with the highest priority should be elected as coordinator.

Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on to the next
successor.

If a message is passed on, the sender adds itself to the list. When it gets
back to the initiator, everyone had a chance to make its presence known.

The initiator sends a coordinator message around the ring containing a
list of all living processes. The one with the highest priority is elected as
coordinator.

31 / 35

Coordination: Election algorithms A ring algorithm

Election in a ring

Election algorithm using a ring

1 2 3 4

5670

[3]

[3,4]

[3,4,5]

[3,4,5,6]

[3,4,5,6,0]

[3,4,5,6,0,1] [3,4,5,6,0,1,2]

[6]

[6,0]

[6,0,1] [6,0,1,2] [6,0,1,2,3]

[6,0,1,2,3,4]

[6,0,1,2,3,4,5]

The solid line shows the election messages initiated by P6

The dashed one the messages by P3

32 / 35

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

Capacity

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

Broadcasting

node

33 / 35

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

i
j

g receives

broadcast

from b first

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

e receives

broadcast

from g first

34 / 35

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

ij

f receives
broadcast

from e first

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

ij

[f,4]

[c,3]

[d,2]

[i,5][h,8]

[h,8]

[h,8]

[j,4]

[f,4]

35 / 35

	Coordination
	Clock synchronization
	Physical clocks
	Clock synchronization algorithms

	Logical clocks
	Lamport's logical clocks
	Vector clocks

	Mutual exclusion
	Overview
	A centralized algorithm
	A distributed algorithm
	A token-ring algorithm
	A decentralized algorithm

	Election algorithms
	The bully algorithm
	A ring algorithm
	Elections in wireless environments

