
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 03: Processes

Edited by: Hicham G. Elmongui



Processes: Threads Introduction to threads

Introduction to threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

Process: A software processor in whose context one or more threads may
be executed. Executing a thread, means executing a series of
instructions in the context of that thread.

2 / 36



Processes: Threads Introduction to threads

Context switching

Contexts

Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).

3 / 36



Processes: Threads Introduction to threads

Context switching

Observations

1 Threads share the same address space. Thread context switching can be
done entirely independent of the operating system.

2 Process switching is generally (somewhat) more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel.

3 Creating and destroying threads is much cheaper than doing so for
processes.

4 / 36



Processes: Threads Introduction to threads

Why use threads

Some simple reasons

Avoid needless blocking: a single-threaded process will block when doing
I/O; in a multi-threaded process, the operating system can switch the CPU
to another thread in that process.

Exploit parallelism: the threads in a multi-threaded process can be
scheduled to run in parallel on a multiprocessor or multicore processor.

Avoid process switching: structure large applications not as a collection of
processes, but through multiple threads.

Thread usage in nondistributed systems 5 / 36



Processes: Threads Introduction to threads

Avoid process switching

Avoid expensive context switching

Process A Process B

Operating system

S1: Switch from user space
to kernel space

S3: Switch from kernel
space to user space

S2: Switch context from
process A to process B

Trade-offs

Threads use the same address space: more prone to errors

No support from OS/HW to protect threads using each other’s memory

Thread context switching may be faster than process context switching

Thread usage in nondistributed systems 6 / 36



Processes: Threads Introduction to threads

Threads and operating systems

Main issue
Should an OS kernel provide threads, or should they be implemented as
user-level packages?

User-space solution

All operations can be completely handled within a single process⇒
implementations can be extremely efficient.

All services provided by the kernel are done on behalf of the process in
which a thread resides⇒ if the kernel decides to block a thread, the
entire process will be blocked.

Threads are used when there are lots of external events: threads block on
a per-event basis⇒ if the kernel can’t distinguish threads, how can it
support signaling events to them?

Thread implementation 7 / 36



Processes: Threads Introduction to threads

Threads and operating systems

Kernel solution
The whole idea is to have the kernel contain the implementation of a thread
package. This means that all operations return as system calls:

Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event.

The problem is (or used to be) the loss of efficiency due to the fact that
each thread operation requires a trap to the kernel.

Conclusion – but
Try to mix user-level and kernel-level threads into a single concept, however,
performance gain has not turned out to outweigh the increased complexity.

Thread implementation 8 / 36



Processes: Threads Threads in distributed systems

Using threads at the client side

Multithreaded web client
Hiding network latencies:

Web browser scans an incoming HTML page, and finds that more files
need to be fetched.
Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.
As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

A client does several calls at the same time, each one by a different
thread.
It then waits until all results have been returned.
Note: if calls are to different servers, we may have a linear speed-up.

Multithreaded clients 9 / 36



Processes: Threads Threads in distributed systems

Using threads at the server side

Improve performance

Starting a thread is cheaper than starting a new process.
Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.
As with clients: hide network latency by reacting to next request while
previous one is being replied.

Better structure
Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure.
Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control.

Multithreaded servers 10 / 36



Processes: Threads Threads in distributed systems

Why multithreading is popular: organization

Dispatcher/worker model

Dispatcher thread

Worker thread

Server

Operating system

Request coming in
from the network

Request dispatched
to a worker thread

Overview

Model Characteristics
Multithreading Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Multithreaded servers 11 / 36



Processes: Virtualization Principle of virtualization

Virtualization

Observation
Virtualization is important:

Hardware changes faster than software
Ease of portability and code migration
Isolation of failing or attacked components

Principle: mimicking interfaces

Hardware/software system A

Interface A

Program

Hardware/software system B

Interface B

Interface A

Implementation of
mimicking A on B

Program

12 / 36



Processes: Virtualization Principle of virtualization

Mimicking interfaces

Four types of interfaces at three different levels

1 Instruction set architecture: the set of machine instructions, with two
subsets:

Privileged instructions: allowed to be executed only by the operating
system.
General instructions: can be executed by any program.

2 System calls as offered by an operating system.
3 Library calls, known as an application programming interface (API)

Types of virtualization 13 / 36



Processes: Virtualization Principle of virtualization

Ways of virtualization

(a) Process VM, (b) Native VMM, (c) Hosted VMM

Runtime system

Application/Libraries

Hardware

Operating system

Application/Libraries

Virtual machine monitor

Hardware

Operating system Virtual machine monitor

Application/Libraries

Hardware

Operating system

Operating system

(a) (b) (c)

Differences
(a) Separate set of instructions, an interpreter/emulator, running atop an OS.
(b) Low-level instructions, along with bare-bones minimal operating system
(c) Low-level instructions, but delegating most work to a full-fledged OS.

Types of virtualization 14 / 36



Processes: Virtualization Principle of virtualization

Zooming into VMs: performance

Refining the organization

Virtual machine monitor

Application/Libraries

Hardware

Host operating system

Guest operating system

Privileged
instructions

General
instructions

Privileged instruction: if and only if
executed in user mode, it causes
a trap to the operating system

Nonpriviliged instruction: the rest

Special instructions

Control-sensitive instruction: may affect configuration of a machine (e.g.,
one affecting relocation register or interrupt table).

Behavior-sensitive instruction: effect is partially determined by context
(e.g., POPF sets an interrupt-enabled flag, but only in system mode).

Types of virtualization 15 / 36



Processes: Virtualization Principle of virtualization

Condition for virtualization

Necessary condition

For any conventional computer, a virtual machine monitor may be constructed
if the set of sensitive instructions for that computer is a subset of the set of
privileged instructions.

Problem: condition is not always satisfied

There may be sensitive instructions that are executed in user mode without
causing a trap to the operating system.

Solutions

Emulate all instructions

Wrap nonprivileged sensitive instructions to divert control to VMM

Paravirtualization: modify guest OS, either by preventing nonprivileged
sensitive instructions, or making them nonsensitive (i.e., changing the
context).

Types of virtualization 16 / 36



Processes: Virtualization Application of virtual machines to distributed systems

VMs and cloud computing

Three types of cloud services

Infrastructure-as-a-Service covering the basic infrastructure
Platform-as-a-Service covering system-level services
Software-as-a-Service containing actual applications

IaaS
Instead of renting out a physical machine, a cloud provider will rent out a VM
(or VMM) that may possibly be sharing a physical machine with other
customers⇒ almost complete isolation between customers (although
performance isolation may not be reached).

17 / 36



Processes: Clients Networked user interfaces

Client-server interaction

Distinguish application-level and middleware-level solutions
Server machine

Application Application

Client machine

Application-

specific

protocol

Network

Middleware Middleware

Local OSLocal OS

Server machineClient machine

Application-

independent

protocol

Network

Middleware Middleware

Local OSLocal OS

Application Application

18 / 36



Processes: Clients Networked user interfaces

Example: The X Window system

Basic organization

Window
manager

Application

X kernel

Device drivers

Xlib interface

X protocol

Terminal (includes display
keyboard, mouse, etc.)

Application serverApplication server User's terminal

Xlib Xlib

Local OS Local OS

X client and server
The application acts as a client to the X-kernel, the latter running as a server
on the client’s machine.

Example: The X window system 19 / 36



Processes: Clients Networked user interfaces

Improving X

Practical observations
There is often no clear separation between application logic and
user-interface commands
Applications tend to operate in a tightly synchronous manner with an X
kernel

Alternative approaches

Let applications control the display completely, up to the pixel level (e.g.,
VNC)

Provide only a few high-level display operations (dependent on local video
drivers), allowing more efficient display operations.

Thin-client network computing 20 / 36



Processes: Clients Client-side software for distribution transparency

Client-side software

Generally tailored for distribution transparency

Access transparency: client-side stubs for RPCs
Location/migration transparency: let client-side software keep track of
actual location
Replication transparency: multiple invocations handled by client stub:

Client

appl

Server

appl

Server

appl

Server

appl

Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles

request replication

Failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).

21 / 36



Processes: Servers General design issues

Servers: General organization

Basic model
A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the
request is taken care of, after which it waits for the next incoming request.

22 / 36



Processes: Servers General design issues

Concurrent servers

Two basic types

Iterative server: Server handles the request before attending a next
request.

Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Observation
Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

Concurrent versus iterative servers 23 / 36



Processes: Servers General design issues

Contacting a server

Observation: most services are tied to a specific port

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet
smtp 25 Simple Mail Transfer
www 80 Web (HTTP)

Dynamically assigning an end point

End-point
table

2. Request
service

Server machine

Client machine

Client

Server

Daemon

Register
end point

1. Ask for
end point

2. Continue
service

Server machine

Client machine

Client

Specific
server

Super-
server

Create server
and hand off
request

1. Request
service

Contacting a server: end points 24 / 36



Processes: Servers General design issues

Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1: Use a separate port for urgent data

Server has a separate thread/process for urgent messages
Urgent message comes in⇒ associated request is put on hold
Note: we require OS supports priority-based scheduling

Solution 2: Use facilities of the transport layer

Example: TCP allows for urgent messages in same connection
Urgent messages can be caught using OS signaling techniques

Interrupting a server 25 / 36



Processes: Servers General design issues

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

Don’t record whether a file has been opened (simply close it again after
access)
Don’t promise to invalidate a client’s cache
Don’t keep track of your clients

Consequences

Clients and servers are completely independent
State inconsistencies due to client or server crashes are reduced
Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)

Question
Does connection-oriented communication fit into a stateless design?

Stateless versus stateful servers 26 / 36



Processes: Servers General design issues

Servers and state

Stateful servers
Keeps track of the status of its clients:

Record that a file has been opened, so that prefetching can be done
Knows which data a client has cached, and allows clients to keep local
copies of shared data

Observation
The performance of stateful servers can be extremely high, provided clients
are allowed to keep local copies. As it turns out, reliability is often not a major
problem.

Stateless versus stateful servers 27 / 36



Processes: Servers Server clusters

Three different tiers

Common organization

Logical switch

(possibly multiple)

Application/compute servers Distributed

file/database

system

Client requests

Dispatched

request

First tier Second tier Third tier

Crucial element
The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Local-area clusters 28 / 36



Processes: Servers Server clusters

Request Handling

Observation
Having the first tier handle all communication from/to the cluster may lead to a
bottleneck.

A solution: TCP handoff

SwitchClient

Server

Server

Request
Request

(handed off)

Response
Logically a
single TCP
connection

Local-area clusters 29 / 36



Processes: Servers Server clusters

Server clusters

The front end may easily get overloaded: special measures may be needed

Transport-layer switching: Front end simply passes the TCP request to
one of the servers, taking some performance metric into account.
Content-aware distribution: Front end reads the content of the request
and then selects the best server.

Combining two solutions

Application

server

Application

server

SwitchClient

Distributor

Distributor

Dis-
patcher

1. Pass setup request
to a distributor

2. Dispatcher selects
server

3. Hand off
TCP connection

4. Inform
switchSetup request

Other messages

5. Forward
other
messages

6. Server responses

Local-area clusters 30 / 36



Processes: Servers Server clusters

When servers are spread across the Internet

Observation
Spreading servers across the Internet may introduce administrative problems.
These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important

Common approach: use DNS:

1 Client looks up specific service through DNS - client’s IP address is part
of request

2 DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

Client transparency

To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

Wide-area clusters 31 / 36



Processes: Code migration Reasons for migrating code

Reasons to migrate code

Load distribution

Ensuring that servers in a data center are sufficiently loaded (e.g., to
prevent waste of energy)

Minimizing communication by ensuring that computations are close to
where the data is (think of mobile computing).

Flexibility: moving code to a client when needed

Client Server

Code repository

Service-specific
client-side code

1. Client fetches code

2. Client and server
communicate

Avoids pre-installing software and increases dynamic configuration.
32 / 36



Processes: Code migration Reasons for migrating code

Models for code migration

Before execution After execution
Client Server Client Server

CS
code

exec

resource

code

exec*

resource

REV
code

−→ exec

resource

−→
code

exec*

resource

CS: Client-Server REV: Remote evaluation

33 / 36



Processes: Code migration Reasons for migrating code

Models for code migration

Before execution After execution
Client Server Client Server

CoD exec

resource

←−
code code

exec*

resource

←−

MA
code

exec

resource

−→
resource resource

−→
code

exec*

resource

CoD: Code-on-demand MA: Mobile agents

34 / 36



Processes: Code migration Migration in heterogeneous systems

Migration in heterogeneous systems

Main problem

The target machine may not be suitable to execute the migrated code

The definition of process/thread/processor context is highly dependent on
local hardware, operating system and runtime system

Only solution: abstract machine implemented on different platforms

Interpreted languages, effectively having their own VM

Virtual machine monitors

35 / 36



Processes: Code migration Migration in heterogeneous systems

Migrating a virtual machine

Migrating images: three alternatives

1 Pushing memory pages to the new machine and resending the ones that
are later modified during the migration process.

2 Stopping the current virtual machine; migrate memory, and start the new
virtual machine.

3 Letting the new virtual machine pull in new pages as needed: processes
start on the new virtual machine immediately and copy memory pages on
demand.

36 / 36


	Processes
	Threads
	Introduction to threads
	Threads in distributed systems

	Virtualization
	Principle of virtualization
	Application of virtual machines to distributed systems

	Clients
	Networked user interfaces
	Client-side software for distribution transparency

	Servers
	General design issues
	Server clusters

	Code migration
	Reasons for migrating code
	Migration in heterogeneous systems



