
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 07: Consistency & Replication

Edited by: Hicham G. Elmongui

Consistency and replication: Introduction Reasons for replication

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting
operations are done in the the same order everywhere

Conflicting operations: From the world of transactions

Read–write conflict: a read operation and a write operation act
concurrently
Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability Solution: weaken consistency requirements
so that hopefully global synchronization can be avoided

2 / 30

Consistency and replication: Data-centric consistency models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the data
store specifies precisely what the results of read and write operations are in
the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy

3 / 30

Consistency and replication: Data-centric consistency models Continuous consistency

Continuous Consistency

We can actually talk about a degree of consistency

replicas may differ in their numerical value
replicas may differ in their relative staleness
there may be differences with respect to (number and order) of performed
update operations

4 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Sequential consistency

Definition
The result of any execution is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program.

Behavior of two processes operating on the same data item.
P1: W(x)a

R(x)NIL R(x)aP2:

(a) A sequentially consistent data store. (b) A data store that is not sequentially
consistent

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(a) (b)

Sequential consistency 5 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Causal consistency

Definition
Writes that are potentially causally related must be seen by all processes in the
same order. Concurrent writes may be seen in a different order by different
processes.

This sequence is allowed with a causally-consistent store, but not with a
sequentially consistent store.

P1: W(x)a

R(x)a

R(x)a

R(x)a

P2:

P3:

P4:

W(x)c

W(x)b

R(x)b

R(x)b

R(x)c

R(x)c

Causal consistency 6 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Causal consistency

(a) A violation of a causally-consistent store. (b) A correct sequence of events
in a causally-consistent store

P1: W(x)a

R(x)aP2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

P1: W(x)a

P2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

(a) (b)

A slight modification of the figure above. What should R3(x) or R4(y) return?
P1: W(x)a

R(x)aP2:

P3:

P4:

W()by

R(x)a

R(x)?

R()y ?

R()by

Causal consistency 7 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Grouping operations

Definition

Accesses to locks are sequentially consistent.

No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

No data access is allowed to be performed until all previous accesses to
locks have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are immediately
known to other processes. You just want the effect of the series itself to be
known.

Grouping operations 8 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Grouping operations

A valid event sequence for entry consistency
L(x) W(x)a L(y) W(y)b U(x) U(y)

L(x) R(x)a R(y) NIL

L(y) R(y)b

P1:

P2:

P3:

Observation
Entry consistency implies that we need to lock and unlock data (implicitly or
not).

Question
What would be a convenient way of making this consistency more or less
transparent to programmers?

Grouping operations 9 / 30

Consistency and replication: Data-centric consistency models Consistent ordering of operations

Consistency versus coherence

Consistency models

A consistency model describes what can be expected with respect to a set of
data items when multiple processes concurrently operate on that data. The set
is then said to be consistent if it adheres to the rules described by the model.

Coherence models
Coherence models describe what can be expected to hold for only a single
data item. A replicated data item is said to be coherent when the various
copies abide to the rules as defined by its associated consistency model.

Consistency versus coherence 10 / 30

Consistency and replication: Data-centric consistency models Eventual consistency

Eventual Consistency

How fast should updates be made available to only-reading processes?

In many database systems, most processes hardly ever perform update
operations; they mostly read data from the database. Only one, or very few
processes perform update operations.

How often do write-write conflicts occur?

Web pages are updated by a single authority (webmaster or page owner).

Only the naming authority of a DNS domain updates its part of the NS.

Eventual consistency

These examples can be viewed as cases of (large scale) distributed and
replicated databases that tolerate a relatively high degree of inconsistency.
They have in common that if no updates take place for a long time, all replicas
will gradually become consistent, that is, have exactly the same data stored.

11 / 30

Consistency and replication: Client-centric consistency models

Consistency for mobile users

Example

Consider a distributed database to which you have access through your
notebook. Assume your notebook acts as a front end to the database.

At location A you access the database doing reads and updates.

At location B you continue your work, but unless you access the same
server as the one at location A, you may detect inconsistencies:

your updates at A may not have yet been propagated to B
you may be reading newer entries than the ones available at A
your updates at B may eventually conflict with those at A

Note
The only thing you really want is that the entries you updated and/or read at A,
are in B the way you left them in A. In that case, the database will appear to be
consistent to you.

12 / 30

Consistency and replication: Client-centric consistency models

Basic architecture

The principle of a mobile user accessing different replicas of a distributed
database

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database

13 / 30

Consistency and replication: Client-centric consistency models

Client-centric consistency: notation

Notation

W1(x2) is the write operation by process P1 that leads to version x2 of x

W1(xi ;xj) indicates P1 produces version xj based on a previous version xi .

W1(xi |xj) indicates P1 produces version xj concurrently to version xi .

14 / 30

Consistency and replication: Client-centric consistency models Monotonic reads

Monotonic reads

Example

Automatically reading your personal calendar updates from different servers.
Monotonic Reads guarantees that the user sees all updates, no matter from
which server the automatic reading takes place.

Example

Reading (not modifying) incoming mail while you are on the move. Each time
you connect to a different e-mail server, that server fetches (at least) all the
updates from the server you previously visited.

15 / 30

Consistency and replication: Client-centric consistency models Monotonic reads

Monotonic reads

Definition
If a process reads the value of a data item x , any successive read operation on
x by that process will always return that same or a more recent value.

The read operations performed by a single process P at two different local
copies of the same data store. (a) A monotonic-read consistent data store.
(b) A data store that does not provide monotonic reads

W (x)1 1

W (x x)2 1 2;

R (x)1 1

R (x)1 2

L1:

L2:

W (x)1 1

W (x x)2 1 2|

R (x)1 1

R (x)1 2

L1:

L2:

16 / 30

Consistency and replication: Client-centric consistency models Monotonic writes

Monotonic writes

Definition
A write operation by a process on a data item x is completed before any
successive write operation on x by the same process.

Example

Updating a program at server S2 , and ensuring that all components on which
compilation and linking depends, are also placed at S2 .

Example

Maintaining versions of replicated files in the correct order everywhere
(propagate the previous version to the server where the newest version is
installed).

17 / 30

Consistency and replication: Client-centric consistency models Monotonic writes

Monotonic writes

(a) A monotonic-write consistent data store. (b) A data store that does not
provide monotonic-write consistency. (c) Again, no consistency as WS(x1|x2)
and thus also WS(x1|x3). (d) Consistent as WS(x1;x3) although x1 has
apparently overwritten x2 .

W (x)1 1

W (x x)2 1 2; W (x x)1 2 3;

L1:

L2:

W (x)1 1

W (x x)2 1 2| W (x x)1 31|

L1:

L2:

(a) (b)

W (x)1 1

W (x x)2 1 2| W (x x)1 2 3;

L1:

L2:

W (x)1 1

W (x x)2 1 2| W (x x)1 31;

L1:

L2:

(c) (d)

18 / 30

Consistency and replication: Client-centric consistency models Read your writes

Read your writes

Definition
The effect of a write operation by a process on data item x , will always be seen
by a successive read operation on x by the same process.

Example

Updating your Web page and guaranteeing that your Web browser shows the
newest version instead of its cached copy.

(a) A data store that provides read-your-writes consistency. (b) A data store
that does not.

W (x)1 1

W (x x)2 1 2; R1 2(x)

L1:

L2:

W (x)1 1

W (x x)2 1 2| R1 2(x)

L1:

L2:

(a) (b)

19 / 30

Consistency and replication: Client-centric consistency models Writes follow reads

Writes follow reads

Definition
A write operation by a process on a data item x following a previous read
operation on x by the same process, is guaranteed to take place on the same
or a more recent value of x that was read.

Example

See reactions to posted articles only if you have the original posting (a read
“pulls in” the corresponding write operation).

(a) A writes-follow-reads consistent data store. (b) A data store that does not
provide writes-follow-reads consistency.

R2(x)1W (x)1 1

W (x x)3 1 2; W (x x)2 2 3;

L1:

L2:

W (x)1 1 R2(x)1

W (x x)3 1 2| W (x x)2 31|

L1:

L2:

(a) (b)

20 / 30

Consistency and replication: Replica management Finding the best server location

Replica placement

To support replication, one has to:

decide where replicas should be placed.

decide when replicas should be placed.

decide by whom replicas should be placed.

decide which mechanisms to use for keeping the replicas consistent.

The placement problem itself should be split into two sub-problems:

Replica-server placement is concerned with finding the best locations to
place a server that can host (part of) a data store.

Content placement deals with finding the best servers for placing content.

With the advent of the many large-scale data centers located across the
Internet, and the continuous connectivity improvement, precisely locating
servers becomes less critical!

21 / 30

Consistency and replication: Replica management Content replication and placement

Content replication

Distinguish different processes

Permanent replicas: Process/machine always having a replica
Server-initiated replica: Process that can dynamically host a replica on
request of another server in the data store
Client-initiated replica: Process that can dynamically host a replica on
request of a client (client cache)

Logical organization of diff. kinds of copies of a data store: 3 concentric rings

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication

Server-initiated replication

Permanent replicas 22 / 30

Consistency and replication: Replica management Content distribution

Content distribution

Consider only a client-server combination

Propagate only notification/invalidation of update (often used for caches)
Transfer data from one copy to another (distributed databases): passive
replication
Propagate the update operation to other copies: active replication

Note
No single approach is the best, but depends highly on available bandwidth and
read-to-write ratio at replicas.

State versus operations 23 / 30

Consistency and replication: Replica management Content distribution

Content distribution: client/server system

A comparison between push-based and pull-based protocols in the case of
multiple-client, single-server systems

Pushing updates: server-initiated approach, in which update is
propagated regardless whether target asked for it.

Pulling updates: client-initiated approach, in which client requests to be
updated.

Issue Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) Poll and update
3: Immediate (or fetch-update time) Fetch-update time
1: State at server
2: Messages to be exchanged
3: Response time at the client

Pull versus push protocols 24 / 30

Consistency and replication: Replica management Content distribution

Content distribution
Observation
We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time dependent on system’s behavior (adaptive leases)

Age-based leases: An object that hasn’t changed for a long time, will not
change in the near future, so provide a long-lasting lease

Renewal-frequency-based leases: The more often a client requests an
object, the longer the expiration time for that client (for that object) will be

State-based leases: The more loaded a server is, the shorter the
expiration times become

Why are we doing all this?

Trying to reduce the server’s state as much as possible while providing
strong consistency.

Pull versus push protocols 25 / 30

Consistency and replication: Replica management Content distribution

Content Distribution

In many cases, it is cheaper to use available multicasting facilities.

Multicasting can often be efficiently combined with a push-based
approach to propagating updates.

When the two are carefully integrated, a server that decides to push its
updates to a number of other servers simply uses a single multicast group
to send its updates.

In other cases, unicasting may be the most efficient solution

With a pull-based approach, it is generally only a single client or server
that requests its copy to be updated.

Unicasting versus multicasting 26 / 30

Consistency and replication: Consistency protocols Primary-based protocols

Primary-based protocols
Primary-backup protocol

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Example primary-backup protocol

Traditionally applied in distributed databases and file systems that require a
high degree of fault tolerance. Replicas are often placed on same LAN.

Remote-write protocols 27 / 30

Consistency and replication: Consistency protocols Primary-based protocols

Primary-based protocols
Primary-backup protocol with local writes

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Example primary-backup protocol with local writes

Mobile computing in disconnected mode (ship all relevant files to user before
disconnecting, and update later on).

Local-write protocols 28 / 30

Consistency and replication: Consistency protocols Replicated-write protocols

Replicated-write protocols

In replicated-write protocols, write operations can be carried out at multiple
replicas instead of only one, as in the case of primary-based replicas.

Active replication

Each replica has an associated process that carries out update
operations.

The write operation (or the update itself) is propagated to each replica.

A total ordered multicast mechanism is used carry out the operations

Use a central coordinator, a sequencer, which assigns a unique sequence
number to each operation.

Operations are carried out at each replica in the order of their sequence
number.

Active replication 29 / 30

Consistency and replication: Consistency protocols Replicated-write protocols

Replicated-write protocols
Quorum-based protocols

Ensure that each operation is carried out in such a way that a majority vote is
established: distinguish read quorum and write quorum

NR +NW > N

NW > N/2

Three examples of the voting algorithm. (a) A correct choice of read and write
set. (b) A choice that may lead to write-write conflicts. (c) A correct choice,
known as ROWA (read one, write all)

A B C D

E F G H

I J K L

N
R W

N= 3, = 10

A B C D

E F G H

I J K L

N
R W

N= 7, = 6

A B C D

E F G H

I J K L

N
R W

N= 1, = 12

(a) (b) (c)

Quorum-based protocols 30 / 30

