
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 05: Naming

Edited by: Hicham G. Elmongui

Naming: Names, identifiers, and addresses

Naming

Essence
Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that
are named by means of an address.

Note
A location-independent name for an entity E , is independent from the
addresses of the access points offered by E .

2 / 35

Naming: Names, identifiers, and addresses

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure names can
be used for comparison only.

Identifier: A name having some specific properties

1 An identifier refers to at most one entity.
2 Each entity is referred to by at most one identifier.
3 An identifier always refers to the same entity (i.e., it is never reused).

Observation
An identifier need not necessarily be a pure name, i.e., it may have content.

3 / 35

Naming: Flat naming Simple solutions

Broadcasting

Broadcast the ID, requesting the entity to return its current address

Can never scale beyond local-area networks
Requires all processes to listen to incoming location requests

Address Resolution Protocol (ARP)

To find out which MAC address is associated with an IP address, broadcast the
query “who has this IP address”?

Broadcasting 4 / 35

Naming: Flat naming Simple solutions

Forwarding pointers

When an entity moves, it leaves behind a pointer to its next location

Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers

Update a client’s reference when present location is found

Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

Long chains are not fault tolerant
Increased network latency at dereferencing

Forwarding pointers 5 / 35

Naming: Flat naming Home-based approaches

Home-based approaches

Single-tiered scheme: Let a home keep track of where the entity is

Entity’s home address registered at a naming service
The home registers the foreign address of the entity
Client contacts the home first, and then continues with foreign location

6 / 35

Naming: Flat naming Home-based approaches

The principle of mobile IP

Host's current location

Client's
location

1. Send packet to host at its home

2. Return address
of current location

3. Tunnel packet to
current location

4. Send successive packets
to current location

Host's home
location

7 / 35

Naming: Flat naming Home-based approaches

Home-based approaches

Problems with home-based approaches

Home address has to be supported for entity’s lifetime

Home address is fixed⇒ unnecessary burden when the entity
permanently moves

Poor geographical scalability (entity may be next to client)

Note
Permanent moves may be tackled with another level of naming (DNS)

8 / 35

Naming: Flat naming Distributed hash tables

Illustrative: Chord

Consider the organization of many nodes into a logical ring

Each node is assigned a random m-bit identifier.
Every entity is assigned a unique m-bit key.
Entity with key k falls under jurisdiction of node with smallest id ≥ k
(called its successor succ(k)).

Nonsolution
Let each node keep track of its neighbor and start linear search along the ring.

Main Issue in DHT-based Systems

To Efficiently resolve a key k to the address of succ(k).

General mechanism 9 / 35

Naming: Flat naming Distributed hash tables

Chord lookup example

Resolving key 26 from node 1 and key 12 from node 28

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4
2 4
3 9
4 9
5 18

1 9
2 9
3 9
4 14
5 20

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 18
2 18
3 18
4 28
5 1

1 20
2 20
3 28
4 28
5 4

1 21
2 28
3 28
4 28
5 4

1 28
2 28
3 28
4 1
5 9

1 1
2 1
3 1
4 4
5 14

Resolve k = 26
from node 1

Resolve k = 12
from node 28

i su
cc

(p
 +

 2

) i-1

Finger table

Actual node

General mechanism 10 / 35

Naming: Flat naming Hierarchical approaches

Hierarchical Location Services (HLS)

Basic idea
Build a large-scale search tree for which the underlying network is divided into
hierarchical domains. Each domain is represented by a separate directory
node.

Principle

A leaf domain, contained in S

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
(S is contained in T)

Top-level
domain T

The root directory
node dir(T)

11 / 35

Naming: Flat naming Hierarchical approaches

HLS: Tree organization
Invariants

Address of entity E is stored in a leaf or intermediate node
Intermediate nodes contain a pointer to a child if and only if the subtree
rooted at the child stores an address of the entity
The root knows about all entities

Storing information of an entity having two addresses in different leaf domains

Domain D2
Domain D1

M

Field with no data

Location record
with only one field,
containing an address

Field for domain
dom(N) with
pointer to N

Location record
for E at node M

N

12 / 35

Naming: Flat naming Hierarchical approaches

HLS: Lookup operation

Basic principles

Start lookup at local leaf node
Node knows about E ⇒ follow downward pointer, else go up
Upward lookup always stops at root

Looking up a location

Domain D

M

Node has no
record for E, so
that request is
forwarded to
parent

Look-up
request

Node knows
about E, so request
is forwarded to child

13 / 35

Naming: Flat naming Hierarchical approaches

HLS: Insert operation

(a) An insert request is forwarded to the first node that knows about entity E .
(b) A chain of forwarding pointers to the leaf node is created

Domain D

M

Node has no
record for E,
so request is
forwarded
to parent

Insert
request

Node knows
about E, so request
is no longer forwarded

M

Node creates record
and stores pointer

Node creates
record and
stores address

(a) (b)

14 / 35

Naming: Structured naming Name spaces

Name space
Naming graph

A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

A general naming graph with a single root node

elke

.procmail mbox

steen

home keys

"/home/steen/mbox"

"/keys"
"/home/steen/keys"

Data stored in n1

Directory node

Leaf node

n2: "elke"
n3: "max"
n4: "steen"

max

keys

n1

n2

n5

n0

n3 n4

Note
A directory node contains a table of (node identifier, edge label) pairs.

15 / 35

Naming: Structured naming Name spaces

Name space

We can easily store all kinds of attributes in a node

Type of the entity
An identifier for that entity
Address of the entity’s location
Nicknames
...

Note
Directory nodes can also have attributes, besides just storing a directory table
with (identifier, label) pairs.

16 / 35

Naming: Structured naming Name resolution

Name resolution

Problem
To resolve a name we need a directory node. How do we actually find that
(initial) node?

Closure mechanism: The mechanism to select the implicit context from which
to start name resolution

www.distributed-systems.net: start at a DNS name server
/home/maarten/mbox: start at the local NFS file server (possible recursive
search)
0031 20 598 7784: dial a phone number
77.167.55.6: route message to a specific IP address

Note
You cannot have an explicit closure mechanism – how would you start?

Closure mechanism 17 / 35

Naming: Structured naming Name resolution

Name linking

Hard link
What we have described so far as a path name: a name that is resolved by
following a specific path in a naming graph from one node to another.

Soft link: Allow a node N to contain a name of another node
First resolve N ’s name (leading to N)
Read the content of N, yielding name
Name resolution continues with name

Observations
The name resolution process determines that we read the content of a
node, in particular, the name in the other node that we need to go to.
One way or the other, we know where and how to start name resolution
given name

Linking and mounting 18 / 35

Naming: Structured naming Name resolution

Name linking

The concept of a symbolic link explained in a naming graph

.procmail

"/home/steen/keys"

"/keys"n1

n2

n5

n0

n3

n6

mbox "/keys"

Data stored in n6
n4

elke steen

home keys

Data stored in n1

n2: "elke"
n3: "max"
n4: "steen"

max

keys

Observation
Node n5 has only one name

Linking and mounting 19 / 35

Naming: Structured naming Name resolution

Mounting

Issue
Name resolution can also be used to merge different name spaces in a
transparent way through mounting: associating a node identifier of another
name space with a node in a current name space.

Terminology

Foreign name space: the name space that needs to be accessed
Mount point: the node in the current name space containing the node
identifier of the foreign name space
Mounting point: the node in the foreign name space where to continue
name resolution

Mounting across a network

1 The name of an access protocol.
2 The name of the server.
3 The name of the mounting point in the foreign name space.

Linking and mounting 20 / 35

Naming: Structured naming Name resolution

Mounting in distributed systems

Mounting remote name spaces through a specific access protocol
Name server Name server for foreign name space

Reference to foreign name space
Network

Machine A Machine B

vu

remote
keys

"nfs://flits.cs.vu.nl/home/steen"

mbox

steen

home

Linking and mounting 21 / 35

Naming: Structured naming The implementation of a name space

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations
Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.
Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

Name space distribution 22 / 35

Naming: Structured naming The implementation of a name space

Name-space implementation
An example partitioning of the DNS name space, including network files

org net
jp us

nl

oracle

eng

yale

eng

ai linda

robot

acm

jack jill

ieee

keio

cs

cs

pc24

co

nec

csl

uva vu

cs

ftp www

ac

com edu
gov mil

pub

globule

index.htm

Mana-
gerial
layer

Adminis-
trational

layer

Global
layer

Zone

Name space distribution 23 / 35

Naming: Structured naming The implementation of a name space

Name-space implementation

A comparison between name servers for implementing nodes in a name space

Item Global Administrational Managerial
1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate
4 Lazy Immediate Immediate
5 Many None or few None
6 Yes Yes Sometimes

1: Geographical scale 4: Update propagation
2: # Nodes 5: # Replicas
3: Responsiveness 6: Client-side caching?

Name space distribution 24 / 35

Naming: Structured naming The implementation of a name space

Iterative name resolution

Principle
1 resolve(dir , [name1, ...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir ,name1)→ dir1, returning the identification

(address) of Server1, which stores dir1.
3 Client sends resolve(dir1, [name2 , ...,nameK]) to Server1, etc.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. [nl,vu,cs,ftp]

2. #[nl], [vu,cs,ftp]

3. [vu,cs,ftp]

4. #[vu], [cs,ftp]

5. [cs,ftp]

6. #[cs], [ftp]

ftp

cs

vu

nl

Nodes are
managed by
the same server

7. [ftp]

8. #[ftp]

#[nl,vu,cs,ftp][nl,vu,cs,ftp]

Implementation of name resolution 25 / 35

Naming: Structured naming The implementation of a name space

Recursive name resolution

Principle
1 resolve(dir , [name1, ...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir ,name1)→ dir1, and sends

resolve(dir1, [name2 , ...,nameK]) to Server1, which stores dir1.
3 Server0 waits for result from Server1, and returns it to client.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. [nl,vu,cs,ftp]

2. [vu,cs,ftp]

7. #[vu,cs,ftp]
3. [cs,ftp]

6. #[cs,ftp]

4. [ftp]

5. #[ftp]

#[nl,vu,cs,ftp]

8. #[nl,vu,cs,ftp]

[nl,vu,cs,ftp]

Implementation of name resolution 26 / 35

Naming: Structured naming The implementation of a name space

Caching in recursive name resolution

Recursive name resolution of [nl , vu, cs,ftp]

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester

cs [ftp] #[ftp] — — #[ftp]
vu [cs, ftp] #[cs] [ftp] #[ftp] #[cs]

#[cs, ftp]
nl [vu,cs, ftp] #[vu] [cs, ftp] #[cs] #[vu]

#[cs, ftp] #[vu,cs]
#[vu,cs, ftp]

root [nl ,vu,cs, ftp] #[nl] [vu,cs, ftp] #[vu] #[nl]
#[vu,cs] #[nl ,vu]
#[vu,cs, ftp] #[nl ,vu,cs]

#[nl ,vu,cs, ftp]

Implementation of name resolution 27 / 35

Naming: Attribute-based naming Directory services

Attribute-based naming

Observation
In many cases, it is much more convenient to name, and look up entities by
means of their attributes⇒ traditional directory services (aka yellow pages).

Problem
Lookup operations can be extremely expensive, as they require to match
requested attribute values, against actual attribute values⇒ inspect all entities
(in principle).

28 / 35

Naming: Attribute-based naming Hierarchical implementations: LDAP

Implementing directory services

Solution for scalable searching

Implement basic directory service as database, and combine with traditional
structured naming system.

Lightweight Directory Access Protocol (LDAP)

Each directory entry consists of (attribute, value) pairs, and is uniquely named
to ease lookups.

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O VU University
OrganizationalUnit OU Computer Science
CommonName CN Main server
Mail Servers – 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP Server – 130.37.20.20
WWW Server – 130.37.20.20

29 / 35

Naming: Attribute-based naming Hierarchical implementations: LDAP

LDAP

Essence
Directory Information Base: collection of all directory entries in an LDAP
service.
Each record is uniquely named as a sequence of naming attributes
(called Relative Distinguished Name), so that it can be looked up.
Directory Information Tree: the naming graph of an LDAP directory
service; each node represents a directory entry.

Part of a directory information tree

C = NL

O = VU University

OU = Computer Science

HostName = star HostName = zephyr

CN = Main server

N

30 / 35

Naming: Attribute-based naming Hierarchical implementations: LDAP

LDAP

Two directory entries having HostName as RDN

Attribute Value Attribute Value

Locality Amsterdam Locality Amsterdam
Organization VU University Organization VU University
OrganizationalUnit Computer Science OrganizationalUnit Computer Science
CommonName Main server CommonName Main server
HostName star HostName zephyr
HostAddress 192.31.231.42 HostAddress 137 .37 .20.10

Result of search(‘‘(C=NL)(O=VU University)(OU=*)(CN=Main server)’’)

31 / 35

Naming: Attribute-based naming Decentralized implementations

Distributed index

Basic idea

Assume a set of attributes {a1, . . . ,aN}
Each attribute ak takes values from a set Rk

For each attribute ak associate a set Sk = {Sk
1 , . . . ,S

k
nk
} of nk servers

Global mapping F : F (ak ,v) = Sk
j with Sk

j ∈ Sk and v ∈ Rk

Observation

If L(ak ,v) is set of keys returned by F (ak ,v), then a query can be formulated
as a logical expression, e.g.,

(
F (a1,v1)∧F (a2 ,v2)

)
∨F (a3 ,v3)

which can be processed by the client by constructing the set
(
L(a1,v1)∩L(a2 ,v2)

)
∪L(a3 ,v3)

Using a distributed index 32 / 35

Naming: Attribute-based naming Decentralized implementations

Drawbacks of distributed index

Quite a few

A query involving k attributes requires contacting k servers

Imagine looking up “lastName = Smith∧firstName = Pheriby ”: the client
may need to process many files as there are so many people named
“Smith.”

No (easy) support for range queries, such as “price = [1000−2500].”

Using a distributed index 33 / 35

Naming: Attribute-based naming Decentralized implementations

Alternative: map all attributes to 1 dimension and then
index
Space-filling curves: principle

1 Map the N-dimensional space covered by the N attributes {a1, . . . ,aN}
into a single dimension

2 Hashing values in order to distribute the 1-dimensional space among
index servers.

Hilbert space-filling curve of (a) order 1, and (b) order 4

(a) Values attribute #1

V
a
lu

e
s
 a

tt
ri
b
u
te

 #
2

Index 0 Index 3

Index 1 Index 2

0

1

1

(b)

0/16

2/16

4/16

6/16

8/16

10/16

12/16

14/16

0

16

2

16

12

16

4

16

14

16

6

16

8

16

10

16

Values attribute #1

V
a
lu

e
s
 a

tt
ri
b
u
te

 #
2

Space-filling curves 34 / 35

Naming: Attribute-based naming Decentralized implementations

Space-filling curve

Once the curve has been drawn
Consider the two-dimensional case

a Hilbert curve of order k connects 22k subsquares⇒ has 22k indices.
A range query corresponds to a rectangle R in the 2-dimensional case
R intersects with a number of subsquares, each one corresponding to an
index⇒ we now have a series of indices associated with R.

Getting to the entities

Each index is to be mapped to a server, who keeps a reference to the
associated entity. One possible solution: use a DHT.

Space-filling curves 35 / 35

