Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 05: Naming

Edited by: Hicham G. Elmongui

Naming: Names, identifiers, and addresses

Naming

Essence

Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that
are named by means of an address.

D

A location-independent name for an entity E, is independent from the
addresses of the access points offered by E.

2/35

Naming: Names, identifiers, and addresses

Identifiers

Pure name

A name that has no meaning at all; it is just a random string. Pure names can
be used for comparison only.

4

Identifier: A name having some specific properties

@ An identifier refers to at most one entity.
@ Each entity is referred to by at most one identifier.
© An identifier always refers to the same entity (i.e., it is never reused).

Observation
An identifier need not necessarily be a pure name, i.e., it may have content. J

3/35

Naming: Flat naming Simple solutions

Broadcasting

Broadcast the ID, requesting the entity to return its current address

@ Can never scale beyond local-area networks
@ Requires all processes to listen to incoming location requests

To find out which MAC address is associated with an IP address, broadcast the
query “who has this IP address”?

Broadcasting 4/35

Naming: Flat naming

Forwarding pointers

Simple solutions

When an entity moves, it leaves behind a pointer to its next location

@ Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers

@ Update a client’s reference when present location is found

@ Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

e Long chains are not fault tolerant
e Increased network latency at dereferencing

Forwarding pointers 5/35

Naming: Flat naming

Home-based approaches

Home-based approaches

Single-tiered scheme: Let a home keep track of where the entity is

@ Entity’s home address registered at a naming service
@ The home registers the foreign address of the entity
@ Client contacts the home first, and then continues with foreign location

6/35

Naming: Flat naming

The principle of mobile IP

Home-based approaches

Host's home

——)
location [] 1. Send packet to host at its home

2. Return address
of current location

Client's
location

N\ 3. Tunnel packet to
current location

4. Send successive packets
to current location 5

Host's current location 7

7/35

Naming: Flat naming Home-based approaches

Home-based approaches

Problems with home-based approaches
@ Home address has to be supported for entity’s lifetime

@ Home address is fixed = unnecessary burden when the entity
permanently moves

@ Poor geographical scalability (entity may be next to client)

Permanent moves may be tackled with another level of naming (DNS) I

8/35

Naming: Flat naming

[llustrative: Chord

Distributed hash tables

Consider the organization of many nodes into a logical ring

@ Each node is assigned a random m-bit identifier.

@ Every entity is assigned a unique m-bit key.

@ Entity with key k falls under jurisdiction of node with smallest id > k
(called its successor succ(K)).

Let each node keep track of its neighbor and start linear search along the ring.

Main Issue in DHT-based Systems
To Efficiently resolve a key k to the address of succ(k). J

General I 9/35

Naming: Flat naming Distributed hash tables

Chord lookup example

Resolving key 26 from node 7 and key 72 from node 28

i
Finger table
3

Resolve k = 26
from node 1

General mechanism 10/35

Naming: Flat naming

Hierarchical Location Services (HLS)

Hierarchical approaches

Basic idea

Build a large-scale search tree for which the underlying network is divided into
hierarchical domains. Each domain is represented by a separate directory
node.

Principle

The root directory

node dir(T) Jjopyarel

domain T

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T

"\ (Siscontained in T)
A
)
-
-

Aleaf domain, contained in S

11/35

Naming: Flat naming Hierarchical approaches

HLS: Tree organization

Invariants

@ Address of entity E is stored in a leaf or intermediate node

@ Intermediate nodes contain a pointer to a child if and only if the subtree
rooted at the child stores an address of the entity

@ The root knows about all entities

Storing information of an entity having two addresses in different leaf domains
Field with no data

Field for domain
dom(N) with
pointer to N

s Location record
" for E at node M
)

e M

Location record
with only one field,
containing an address

Domain D1

Domain D2

12/35

Naming: Flat naming

HLS: Lookup operation

Hierarchical approaches

Basic principles

@ Start lookup at local leaf node
@ Node knows about E = follow downward pointer, else go up
@ Upward lookup always stops at root

Looking up a location

Node knows

about E, so request
Node has no is forwarded to child
record for E, so
that request is
forwarded to T
parent f

Look-up 3
request !

13/35

Naming: Flat naming Hierarchical approaches

HLS: Insert operation

(a) An insert request is forwarded to the first node that knows about entity E.
(b) A chain of forwarding pointers to the leaf node is created
Node knows

about E, so request
is no longer forwarded

Node has no
record for E,

so request is Node creates record

and stores pointer

forwarded
to parent

//// Node creates
record and
stores address

Domain D
! Insert

! request

(a) (b)

14/35

Naming: Structured naming

Name space
Naming graph

A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

Name spaces

A general naming graph with a single root node

Data stored in n1

"keys"
"/home/steen/keys"

O Leaf node

D Directory node

keys

"/home/steen/mbox"

Note
A directory node contains a table of (node identifier, edge label) pairs. J

15/35

Naming: Structured naming

Name space

Name spaces

We can easily store all kinds of attributes in a node

@ Type of the entity

@ An identifier for that entity

@ Address of the entity’s location
@ Nicknames

o ..

4

Directory nodes can also have attributes, besides just storing a directory table
with (identifier, label) pairs.

4

16/35

Naming: Structured naming

Name resolution

Name resolution

To resolve a name we need a directory node. How do we actually find that
(initial) node?

Closure mechanism: The mechanism to select the implicit context from which
to start name resolution

@ www.distributed-systems.net: start at a DNS name server

@ /home/maarten/mbox: start at the local NFS file server (possible recursive
search)

@ 0031 20 598 7784: dial a phone number

@ 77.167.55.6: route message to a specific IP address

Note @ One way or the other, we know where and how to start name resolution
You cannot have an explicit closure mechanism — how would you start? given name
Closure mechanism 17/35 Linking and mounting 18/35

Naming: Structured naming

Name linking

Name resolution

Hard link

What we have described so far as a path name: a name that is resolved by
following a specific path in a naming graph from one node to another.

Soft link: Allow a node N to contain a name of another node
@ First resolve N's name (leading to N)
@ Read the content of N, yielding name
@ Name resolution continues with name

Observations

@ The name resolution process determines that we read the content of a
node, in particular, the name in the other node that we need to go to.

Naming: Structured naming Name resolution

Name linking

The concept of a symbolic link explained in a naming graph

Data stored in n1

.procmail /" mbox]

O . @ "/home/steen/keys"
Node n5 has only one name
Linking and mounting 19/35

Naming: Structured naming

Mounting

Name resolution

Issue

Name resolution can also be used to merge different name spaces in a
transparent way through mounting: associating a node identifier of another
name space with a node in a current name space.

Terminology

@ Foreign name space: the name space that needs to be accessed

@ Mount point: the node in the current name space containing the node
identifier of the foreign name space

@ Mounting point: the node in the foreign name space where to continue
name resolution

Mounting across a network

@ The name of an access protocol.
@ The name of the server.
© The name of the mounting point in the foreign name space.

Linking and mounting 20/35

Naming: Structured naming

Mounting in distributed systems

Name resolution

Mounting remote name spaces through a specific access protocol

Name server Name server for foreign name space
Machine A Machine B
=B home
W ["nfs://flits.cs.vu.n\/home/sleen"] sitan
1 mbox |
: O :
| i
| .
Network
Reference to foreign name space
4
Linking and mounting 21/35

Naming: Structured naming

Name-space implementation

The implementation of a name space

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

@ Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

@ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

@ Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

Name space distribution 22/35

Naming: Structured naming

Name-space implementation

An example partitioning of the DNS name space, including network files

The implementation of a name space

Global i
layer com™ edy 2 ? ' o‘%g
acm Eiee
Adminis- e jack jil
trational
layer
Mana-
gerial
layer
4
Name space distribution 23/35

Naming: Structured naming

Name-space implementation

The implementation of a name space

A comparison between name servers for implementing nodes in a name space

Item | Global Administrational | Managerial

1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate

4 Lazy Immediate Immediate

5 Many None or few None

6 Yes Yes Sometimes

1: Geographical scale | 4: Update propagation

2: # Nodes 5: # Replicas

3: Responsiveness 6: Client-side caching?

Name space distribution 24/35

Naming: Structured naming The implementation of a name space

lterative name resolution

Principle

@ resolve(dir,[namey, ...,name]) sent to Server, responsible for dir

@ Server, resolves resolve(dir,name;) — diry, returning the identification
(address) of Server;, which stores dir;.

@ Client sends resolve(dir;,[namey, ...,nameg]) to Server;, etc.

e [l
2. #[nl], [vu,cs,ftp] name server R
4%3‘ [vu,cs, ftp] Name server ‘
|
Client's 4. #vu], [cs,ftp] nl node
name L
o —
I P ——— :
6. #(cs], [ftp] vu node o
cs
L» Name server
8. #[ftp] cs node

nl

ftp
[nl,vu,cs,ftp]T i #[nl,vu,cs,ftp] Nodes are /
managed by
the same server
Implementation of name resolution 25/35

Naming: Structured naming

Recursive name resolution

The implementation of a name space

Principle

@ resolve(dir,[namey, ...,namex]) sent to Server, responsible for dir

@ Servery resolves resolve(dir,name;) — dirs, and sends
resolve(dirs,[namey, ...,name]) to Server;, which stores dir;.

© Server, waits for result from Server;, and returns it to client.

1. [nl,vu,cs,ftp]
e ———
™ Root

8. #[nl,vu,cs,ftp] name server 2. [vu,cs,ftp]
Client's ninode & (i)
name
resolver 6. #[cs,ftp] Name server

vu node 4. [ftp]

'

cs node

S. #[ftp]

[nl,vu.cs,flp]T L#[nl,vu,cs.ﬁp]

Implementation of name resolution 26/35

Naming: Structured naming The implementation of a name space

Caching in recursive name resolution

Recursive name resolution of [n/, vu, cs,fip]

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester
cs [ftp] #{ftp] — — #{ftp]
vu [cs, ftp] #[cs] [ftp] #[ftp] #[cs]
#[cs, fip]
nl [vu, cs, fto] #{wu] [cs, ftp] #[cs] #{wu]
#[cs, fip] #[vu, cs]
#[vu, cs, fip]
root [nl,vu,cs, fip] | #[n/ [vu, cs, ftp] #[vu] #[nl
#[vu, cs] #[nl, vu]
#[vu, cs, fip] #[nl,vu, cs]
#[nl, vu, cs, ftp]
Implementation of name resolution 27/35

Naming: Attribute-based naming Directory services

Attribute-based naming

Observation

In many cases, it is much more convenient to name, and look up entities by
means of their attributes = traditional directory services (aka yellow pages).

Lookup operations can be extremely expensive, as they require to match
requested attribute values, against actual attribute values = inspect all entities
(in principle).

28/35

Naming: Attribute-based naming

Implementing directory services

Hierarchical implementations: LDAP

Solution for scalable searching

Implement basic directory service as database, and combine with traditional
structured naming system.

Lightweight Directory Access Protocol (LDAP)

Each directory entry consists of (attribute, value) pairs, and is uniquely named
to ease lookups.

Attribute Abbr. | Value
Country C NL

Locality L Amsterdam
Organization o VU University

OrganizationalUnit | OU Computer Science

CommonName CN Main server

Mail_Servers = 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server - 130.37.20.20

WWW _Server - 130.37.20.20

29/35

Naming: Attribute-based naming

LDAP

Hierarchical implementations: LDAP

Essence

@ Directory Information Base: collection of all directory entries in an LDAP
service.

@ Each record is uniquely named as a sequence of naming attributes
(called Relative Distinguished Name), so that it can be looked up.

@ Directory Information Tree: the naming graph of an LDAP directory
service; each node represents a directory entry.

Part of a directory information tree

C=NL
. O = VU University
. OU = Computer Science

. CN = Main server

30/35

Naming: Attribute-based naming Hierarchical implementations: LDAP Naming: Attribute-based naming Decentralized implementations
LDAP Distributed index
Basic idea

@ Assume a set of attributes {a’,...,aV}

Two directory entries having HostName as RDN @ Each attribute & takes values from a set RX

Attribute Value ATFIBGTe Value @ For each attribute a* associate a set S¥ = {S¥,..., 8k } of n, servers
Locality Amsterdam Locality Amsterdam @ Global mapping F: F(ak, v)= ka with ij‘ estandve R

Organization VU University Organization VU University

OrganizationalUnit ~ Computer Science |OrganizationalUnit Computer Science Observation

CommonName Main server CommonName Main server If L(a", v) is set of keys returned by F(a*,v), then a query can be formulated
HostName star HostName zephyr as a logical expression, e.g.,

HostAddress 192.31.231.42 HostAddress 137.37.20.10

(F(a',v)nF(a2,v®)) v F(a®,v3)

Result of search (' (C=NL) (0=VU University) (OU=+) (CN=Main server)’’)

which can be processed by the client by constructing the set

(L(a',vT)nL(a2,v3)) UL(a® v®)

31/35 Using a distributed index 32/35
Naming: Attribute-based naming Decentralized implementations Naming: Attribute-based naming Decentralized implementations
Drawbacks of distributed index Alternative: map all attributes to 1 dimension and then
index

Space-filling curves: principle

ap the N-dimensional space covere: the N attributes {a’,...,a
@ Map the N-dimensional sp d by the N attributes {a’,...,a"}

QUi & & into a single dimension
@ Hashing values in order to distribute the 1-dimensional space among
@ A query involving k attributes requires contacting k servers index servers.
@ Imagine looking up “lastName = Smith A firstName = Pheriby”: the client Hilbert space-filling curve of (a) order 1, and (b) order 4
may need to process many files as there are so many people named 1
“Smith.” Index 1 Index 2 e
- - 12/16
@ No (easy) support for range queries, such as “price = [1000 — 2500].” ° T 10
é% é 816
© S e
S 2 e
> >
Index 0 Index 3 216
0/16
0 Y 1 0L 2 4 6 8 10 12 14
16 16 16 16 16 16 16 16
(a) Values attribute #1 (b) Values attribute #1

Using a distributed index

33/35 Space-filling curves

34/35

Naming: Attribute-based naming

Space-filling curve

Decentralized implementations

Once the curve has been drawn
Consider the two-dimensional case

@ a Hilbert curve of order k connects 22¢ subsquares = has 22 indices.

@ A range query corresponds to a rectangle R in the 2-dimensional case

@ Rintersects with a number of subsquares, each one corresponding to an
index = we now have a series of indices associated with R.

Getting to the entities

Each index is to be mapped to a server, who keeps a reference to the
associated entity. One possible solution: use a DHT.

Space-filling curves 35/35

