
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 04: Communication

Edited by: Hicham G. Elmongui

Communication: Foundations Layered Protocols

Basic networking model

Physical

Data link

Network

Transport

Session

Application

Presentation

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

7

6

Drawbacks
Focus on message-passing only
Often unneeded or unwanted functionality
Violates access transparency

The OSI reference model 2 / 26

Communication: Foundations Layered Protocols

Middleware layer

Observation
Middleware is invented to provide common services and protocols that can be
used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols, to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols... such as?

Middleware protocols 3 / 26

Communication: Foundations Layered Protocols

An adapted layering scheme

Hardware

Middleware

Application
Application protocol

Middleware protocol

Host-to-host protocol

Network

Operating
system

Physical/Link-level protocol

Middleware protocols 4 / 26

Communication: Foundations Types of Communication

Types of communication

Distinguish...

Client

Server

Synchronize after
processing by server

Synchronize at
request delivery

Synchronize at
request submission

Request

Reply

Storage
facility

Transmission
interrupt

Time

Transient versus persistent communication
Asynchronous versus synchronous communication

5 / 26

Communication: Foundations Types of Communication

Types of communication

Transient versus persistent

Client

Server

Synchronize after
processing by server

Synchronize at
request delivery

Synchronize at
request submission

Request

Reply

Storage
facility

Transmission
interrupt

Time

Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

6 / 26

Communication: Foundations Types of Communication

Types of communication

Places for synchronization

Client

Server

Synchronize after
processing by server

Synchronize at
request delivery

Synchronize at
request submission

Request

Reply

Storage
facility

Transmission
interrupt

Time

At request submission
At request delivery
After request processing

7 / 26

Communication: Foundations Types of Communication

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

Client and server have to be active at time of communication
Client issues request and blocks until it receives reply
Server essentially waits only for incoming requests, and subsequently
processes them

Drawbacks synchronous communication

Client cannot do any other work while waiting for reply
Failures have to be handled immediately: the client is waiting
The model may simply not be appropriate (mail, news)

8 / 26

Communication: Foundations Types of Communication

Messaging

Message-oriented middleware

Aims at high-level persistent asynchronous communication:

Processes send each other messages, which are queued
Sender need not wait for immediate reply, but can do other things
Middleware often ensures fault tolerance

9 / 26

Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on separate
machine

Conclusion
Communication between caller & callee
can be hidden by using procedure-call
mechanism.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server

Time

Wait for result

10 / 26

Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Implementation
of doit

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process

1. Client call to
procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to “doit”

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
r = a,bdoit() r = a,bdoit()

proc: “doit”

type1: val(a)

type2: val(b)

proc: “doit”

type1: val(a)

type2: val(b)

proc: “doit”

type1: val(a)

type2: val(b)

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters; calls

server.

6 Server does local call; returns result to stub.
7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result; returns to client.

11 / 26

Communication: Remote procedure call Parameter passing

RPC: Parameter passing

There’s more than just wrapping parameters into a message

Client and server machines may have different data representations (think
of byte ordering)
Wrapping a parameter means transforming a value into a sequence of
bytes
Client and server have to agree on the same encoding:

How are basic data values represented (integers, floats, characters)
How are complex data values represented (arrays, unions)

Conclusion
Client and server need to properly interpret messages, transforming them into
machine-dependent representations.

12 / 26

Communication: Remote procedure call Parameter passing

RPC: Parameter passing

Some assumptions

Copy in/copy out semantics: while procedure is executed, nothing can be
assumed about parameter values.
All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

A remote reference mechanism enhances access transparency

Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs
Note: stubs can sometimes be used as such references

13 / 26

Communication: Remote procedure call Variations on RPC

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server Time

Wait for
acceptance

Callback to client

Return
results

Asynchronous RPC 14 / 26

Communication: Remote procedure call Variations on RPC

Sending out multiple RPCs

Essence
Sending an RPC request to a group of servers.

Call local procedure

Call local procedure

Call remote
procedures

Client

Server

Server

Time

Callbacks to client

Multicast RPC 15 / 26

Communication: Remote procedure call Example: DCE RPC

RPC in practice

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

Writing a Client and a Server 16 / 26

Communication: Remote procedure call Example: DCE RPC

Client-to-server binding (DCE)

Issues
(1) Client must locate server machine, and (2) locate the server.

Port
table

Server

DCE
daemon

Client

1. Register port

2. Register service
3. Look up server

4. Ask for port

5. Do RPC

Directory
server

Server machine
Client machine

Directory machine

Binding a client to a server 17 / 26

Communication: Message-oriented communication Simple transient messaging with sockets

Transient messaging: sockets

Berkeley socket interface

Operation Description
socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending

connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection

connect

socket

socket

bind listen receive

receive

send

send

accept close

close

Server

Client

Synchronization point Communication

18 / 26

Communication: Message-oriented communication Advanced transient messaging

Making sockets easier to work with

Observation
Sockets are rather low level and programming mistakes are easily made.
However, the way that they are used is often the same (such as in a
client-server setting).

Alternative: ZeroMQ
Provides a higher level of expression by pairing sockets: one for sending
messages at process P and a corresponding one at process Q for receiving
messages. All communication is asynchronous.

Three patterns

Request-reply
Publish-subscribe
Pipeline

Using messaging patterns: ZeroMQ 19 / 26

Communication: Message-oriented communication Advanced transient messaging

MPI: When lots of flexibility is needed

Sockets deemed insufficient

They were at wrong level of abstraction by supporting only simple send
and receive operations

They were not considered suitable for the proprietary protocols developed
for high-speed interconnection networks

Message-Passing Interface (MPI)

a standard for message passing that is hardware and platform
independent

is designed for parallel applications and as such is tailored to transient
communication

makes direct use of the underlying network

assumes that serious failures such as process crashes or network
partitions are fatal and do not require automatic recovery

The Message-Passing Interface (MPI) 20 / 26

Communication: Message-oriented communication Message-oriented persistent communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation Description

put Append a message to a specified queue
get Block until the specified queue is nonempty, and

remove the first message
poll Check a specified queue for messages, and remove

the first. Never block
notify Install a handler to be called when a message is put

into the specified queue

Message-queuing model 21 / 26

Communication: Message-oriented communication Message-oriented persistent communication

General model

Queue managers

Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only ⇒ queue managers need to route messages.

Routing

Local OS

Source queue
manager

Logical
queue-level

address (name)

Contact
address

Destination queue
manager

Address lookup
database

Look up
contact address
of destination
queue manager

Local OS

Network

General architecture of a message-queuing system 22 / 26

Communication: Message-oriented communication Message-oriented persistent communication

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)

Message brokers 23 / 26

Communication: Message-oriented communication Message-oriented persistent communication

Message broker: general architecture

Local OS

Application

Interface

Local OS Local OS

Application

Interface

Broker plugins Rules

Queuing
layer

Source DestinationMessage broker

Message brokers 24 / 26

Communication: Multicast communication Application-level tree-based multicasting

Application-level multicasting

Essence
Organize nodes of a distributed system into an overlay network and use that
network to disseminate data:

Oftentimes a tree, leading to unique paths
Alternatively, also mesh networks, requiring a form of routing

25 / 26

Communication: Multicast communication Flooding-based multicasting

Flooding

Multicasting as Broadcasting

Construct an overlay network per multicast group.

Performance
A node belonging to several groups, will, in principle, need to maintain a
separate list of its neighbors for each group of which it is a member.

Essence
P simply sends a message m to each of its neighbors. Each neighbor will
forward that message, except to P, and only if it had not seen m before.

Performance
The more edges, the more expensive!

26 / 26

