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Communication: Foundations Layered Protocols
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Drawbacks
Focus on message-passing only
Often unneeded or unwanted functionality
Violates access transparency
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Communication: Foundations Layered Protocols

Middleware layer

Observation
Middleware is invented to provide common services and protocols that can be
used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols, to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols... such as?
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An adapted layering scheme
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Communication: Foundations Types of Communication
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Types of communication

Transient versus persistent
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Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.
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Types of communication
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Communication: Foundations Types of Communication

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

Client and server have to be active at time of communication
Client issues request and blocks until it receives reply
Server essentially waits only for incoming requests, and subsequently
processes them

Drawbacks synchronous communication

Client cannot do any other work while waiting for reply
Failures have to be handled immediately: the client is waiting
The model may simply not be appropriate (mail, news)
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Messaging

Message-oriented middleware

Aims at high-level persistent asynchronous communication:

Processes send each other messages, which are queued
Sender need not wait for immediate reply, but can do other things
Middleware often ensures fault tolerance
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Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on separate
machine

Conclusion
Communication between caller & callee
can be hidden by using procedure-call
mechanism.
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Basic RPC operation

Implementation
of doit

Client OS Server OS

Client machine Server machine

Client stub
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1. Client call to
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2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to “doit”

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
r = a,bdoit( ) r = a,bdoit( )

proc: “doit”

type1:  val(a)

type2:  val(b)

proc: “doit”

type1:  val(a)

type2:  val(b)

proc: “doit”

type1:  val(a)
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1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters; calls

server.

6 Server does local call; returns result to stub.
7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result; returns to client.
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RPC: Parameter passing

There’s more than just wrapping parameters into a message

Client and server machines may have different data representations (think
of byte ordering)
Wrapping a parameter means transforming a value into a sequence of
bytes
Client and server have to agree on the same encoding:

How are basic data values represented (integers, floats, characters)
How are complex data values represented (arrays, unions)

Conclusion
Client and server need to properly interpret messages, transforming them into
machine-dependent representations.
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RPC: Parameter passing

Some assumptions

Copy in/copy out semantics: while procedure is executed, nothing can be
assumed about parameter values.
All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

A remote reference mechanism enhances access transparency

Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs
Note: stubs can sometimes be used as such references
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Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.
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Sending out multiple RPCs

Essence
Sending an RPC request to a group of servers.
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RPC in practice
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Client-to-server binding (DCE)

Issues
(1) Client must locate server machine, and (2) locate the server.

Port
table

Server

DCE
daemon

Client

1. Register port

2. Register service
3. Look up server

4. Ask for port

5. Do RPC

Directory
server
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Transient messaging: sockets

Berkeley socket interface

Operation Description
socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending

connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection

connect

socket

socket
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send
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close
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Synchronization point Communication
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Making sockets easier to work with

Observation
Sockets are rather low level and programming mistakes are easily made.
However, the way that they are used is often the same (such as in a
client-server setting).

Alternative: ZeroMQ
Provides a higher level of expression by pairing sockets: one for sending
messages at process P and a corresponding one at process Q for receiving
messages. All communication is asynchronous.

Three patterns

Request-reply
Publish-subscribe
Pipeline

Using messaging patterns: ZeroMQ 19 / 26
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MPI: When lots of flexibility is needed

Sockets deemed insufficient

They were at wrong level of abstraction by supporting only simple send
and receive operations

They were not considered suitable for the proprietary protocols developed
for high-speed interconnection networks

Message-Passing Interface (MPI)

a standard for message passing that is hardware and platform
independent

is designed for parallel applications and as such is tailored to transient
communication

makes direct use of the underlying network

assumes that serious failures such as process crashes or network
partitions are fatal and do not require automatic recovery

The Message-Passing Interface (MPI) 20 / 26
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Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation Description

put Append a message to a specified queue
get Block until the specified queue is nonempty, and

remove the first message
poll Check a specified queue for messages, and remove

the first. Never block
notify Install a handler to be called when a message is put

into the specified queue

Message-queuing model 21 / 26
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General model

Queue managers

Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only ⇒ queue managers need to route messages.

Routing

Local OS
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Destination queue
manager

Address lookup
database

Look up
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of destination
queue manager

Local OS
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Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)
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Message broker: general architecture
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Communication: Multicast communication Application-level tree-based multicasting

Application-level multicasting

Essence
Organize nodes of a distributed system into an overlay network and use that
network to disseminate data:

Oftentimes a tree, leading to unique paths
Alternatively, also mesh networks, requiring a form of routing
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Communication: Multicast communication Flooding-based multicasting

Flooding

Multicasting as Broadcasting

Construct an overlay network per multicast group.

Performance
A node belonging to several groups, will, in principle, need to maintain a
separate list of its neighbors for each group of which it is a member.

Essence
P simply sends a message m to each of its neighbors. Each neighbor will
forward that message, except to P, and only if it had not seen m before.

Performance
The more edges, the more expensive!
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