
Distributed Systems
(3rd Edition)

Maarten van Steen Andrew S. Tanenbaum

Chapter 01: Introduction

Edited by: Hicham G. Elmongui

Introduction: What is a distributed system?

Distributed System

Definition
A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system.

Characteristic features

Autonomous computing elements, also referred to as nodes, be they
hardware devices or software processes.

Single coherent system: users or applications perceive a single system ⇒
nodes need to collaborate.

2 / 40

Introduction: What is a distributed system? Characteristic 1: Collection of autonomous computing elements

Collection of autonomous nodes

Independent behavior

Each node is autonomous and will thus have its own notion of time: there is no
global clock. Leads to fundamental synchronization and coordination problems.

Collection of nodes

How to manage group membership?

How to know that you are indeed communicating with an authorized
(non)member?

3 / 40

Introduction: What is a distributed system? Characteristic 1: Collection of autonomous computing elements

Organization

Overlay network

Each node in the collection communicates only with other nodes in the system,
its neighbors. The set of neighbors may be dynamic, or may even be known
only implicitly (i.e., requires a lookup).

Overlay types

Well-known example of overlay networks: peer-to-peer systems.

Structured: each node has a well-defined set of neighbors with whom it can
communicate (tree, ring).

Unstructured: each node has references to randomly selected other nodes
from the system.

4 / 40

Introduction: What is a distributed system? Characteristic 2: Single coherent system

Coherent system

Essence
The collection of nodes as a whole operates the same, no matter where, when,
and how interaction between a user and the system takes place.

Examples

An end user cannot tell where a computation is taking place
Where data is exactly stored should be irrelevant to an application
If or not data has been replicated is completely hidden

Keyword is distribution transparency

The snag: partial failures

It is inevitable that at any time only a part of the distributed system fails. Hiding
partial failures and their recovery is often very difficult and in general
impossible to hide.

5 / 40

Introduction: What is a distributed system? Middleware and distributed systems

Middleware: the OS of distributed systems

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Appl. A Application B Appl. C

Distributed-system layer (middleware)

Computer 1 Computer 2 Computer 3 Computer 4

Same interface everywhere

Network

What does it contain?
Commonly used components and functions that need not be implemented by
applications separately.

6 / 40

Introduction: What is a distributed system? Middleware and distributed systems

Middleware: the OS of distributed systems

Middleware services are offered in a networked environment:

Resource management

Facilities for interapplication communication.

Security services.

Accounting services.

Masking of and recovery from failures.

Typical middleware services:

Communication

Transactions

Service composition

Reliability

7 / 40

Introduction: Design goals

What do we want to achieve?

Support sharing of resources

Distribution transparency

Openness

Scalability

8 / 40

Introduction: Design goals Supporting resource sharing

Sharing resources

Canonical examples

Cloud-based shared storage and files
Peer-to-peer assisted multimedia streaming
Shared mail services (think of outsourced mail systems)
Shared Web hosting (think of content distribution networks)

Observation
“The network is the computer”

(quote from John Gage, then at Sun Microsystems)

9 / 40

Introduction: Design goals Making distribution transparent

Distribution transparency

Types

Transparency Description
Access Hide differences in data representation and how an

objecta is accessed
Location Hide where an object is located
Relocation Hide that an object may be moved to another location

while in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several

independent users
Failure Hide the failure and recovery of an object

aWe use the term object to mean either a process or a resource.

Types of distribution transparency 10 / 40

Introduction: Design goals Making distribution transparent

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

There are communication latencies that cannot be hidden
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an operation
before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping replicas exactly up-to-date with the master takes time
Immediately flushing write operations to disk for fault tolerance

Degree of distribution transparency 11 / 40

Introduction: Design goals Making distribution transparent

Degree of transparency

Exposing distribution may be good

Making use of location-based services (finding your nearby friends)

When dealing with users in different time zones

When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice a goal, but achieving it is a different story,
and it should often not even be aimed at.

Degree of distribution transparency 12 / 40

Introduction: Design goals Being open

Openness of distributed systems

What are we talking about?

Be able to interact with services from other open systems, irrespective of the
underlying environment:

Systems should conform to well-defined interfaces
Systems should easily interoperate
Systems should support portability of applications
Systems should be easily extensible

Interoperability, composability, and extensibility 13 / 40

Introduction: Design goals Being open

Policies versus mechanisms

Implementing openness: policies

What level of consistency do we require for client-cached data?
Which operations do we allow downloaded code to perform?
Which QoS requirements do we adjust in the face of varying bandwidth?
What level of secrecy do we require for communication?

Implementing openness: mechanisms

Allow (dynamic) setting of caching policies
Support different levels of trust for mobile code
Provide adjustable QoS parameters per data stream
Offer different encryption algorithms

Separating policy from mechanism 14 / 40

Introduction: Design goals Being scalable

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

Scalability dimensions 15 / 40

Introduction: Design goals Being scalable

Size scalability

Root causes for scalability problems with centralized solutions

The computational capacity, limited by the CPUs

The storage capacity, including the transfer rate between CPUs and disks

The network between the user and the centralized service

Scalability dimensions 16 / 40

Introduction: Design goals Being scalable

Problems with geographical scalability

Cannot simply go from LAN to WAN: many distributed systems assume
synchronous client-server interactions: client sends request and waits for
an answer. Latency may easily prohibit this scheme.

WAN links are often inherently unreliable: simply moving streaming video
from LAN to WAN is bound to fail.

Lack of multipoint communication, so that a simple search broadcast
cannot be deployed. Solution is to develop separate naming and directory
services (having their own scalability problems).

Scalability dimensions 17 / 40

Introduction: Design goals Being scalable

Problems with administrative scalability

Essence
Conflicting policies concerning usage (and thus payment), management, and
security

Examples

Computational grids: share expensive resources between different
domains.

Exception: several peer-to-peer networks

File-sharing systems (based, e.g., on BitTorrent)
Peer-to-peer telephony (Skype)
Peer-assisted audio streaming (Spotify)

Note: end users collaborate and not administrative entities.

Scalability dimensions 18 / 40

Introduction: Design goals Being scalable

Techniques for scaling

Scalability problems in distributed systems appear as performance problems
caused by limited capacity of servers and network

Two solutions:

Scaling up: improving their capacity (e.g., by increasing memory,
upgrading CPUs, or replacing network modules)

Scaling out: expanding the distributed system by essentially deploying
more machines

Hiding communication latencies
Distribution of work
Replication

Scaling techniques 19 / 40

Introduction: Design goals Being scalable

Techniques for scaling

Hide communication latencies

Make use of asynchronous communication

Have separate handler for incoming response

Problem: not every application fits this model

Scaling techniques 20 / 40

Introduction: Design goals Being scalable

Techniques for scaling

Facilitate solution by moving computations to client

M
A

A
R

T
E

N

FIRST NAME

LAST NAME

E-MAIL

ServerClient

Check form Process form

MAARTEN

MVS VAN-STEEN.NET@

VAN STEEN

FIRST NAME

LAST NAME

E-MAIL

ServerClient

Check form Process form

MAARTEN

MVS@VAN-STEEN.NET

VAN STEEN
MAARTEN
VAN STEEN
MVS@VAN-STEEN.NET

Scaling techniques 21 / 40

Introduction: Design goals Being scalable

Techniques for scaling

Partition data and computations across multiple machines

Move computations to clients (Java applets)

Decentralized naming services (DNS)

Decentralized information systems (WWW)

Scaling techniques 22 / 40

Introduction: Design goals Being scalable

Techniques for scaling

Replication and caching: Make copies of data available at different machines

Replicated file servers and databases

Mirrored Web sites

Web caches (in browsers and proxies)

File caching (at server and client)

Benefits of replication:

increases availability

helps to balance the load between components

can hide much of the communication latency problems

Caching

A decision made by the client of a resource and not by the owner

Scaling techniques 23 / 40

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 24 / 40

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

25 / 40

Introduction: Types of distributed systems

Three types of distributed systems

High performance distributed computing systems

Distributed information systems

Distributed systems for pervasive computing

26 / 40

Introduction: Types of distributed systems High performance distributed computing

Cluster computing

Essentially a group of high-end systems connected through a LAN

Homogeneous: same OS, near-identical hardware
Single managing node

Local OSLocal OS Local OS Local OS

Standard network

Component

of

parallel

application

Component

of

parallel

application

Component

of

parallel

application
Parallel libs

Management

application

High-speed network

Remote access

network

Master node Compute node Compute node Compute node

Cluster computing 27 / 40

Introduction: Types of distributed systems High performance distributed computing

Grid computing

The next step: lots of nodes from everywhere

Heterogeneous

Dispersed across several organizations

Can easily span a wide-area network

Note
To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that will allow for
authorization on resource allocation.

Grid computing 28 / 40

Introduction: Types of distributed systems High performance distributed computing

Architecture for grid computing

Applications

Collective layer

Resource layer

Fabric layer

Connectivity layer

The layers

Fabric: Provides interfaces to local resources
(for querying state and capabilities, locking,
etc.)

Connectivity: Communication/transaction
protocols, e.g., for moving data between
resources. Also various authentication
protocols.

Resource: Manages a single resource, such as
creating processes or reading data.

Collective: Handles access to multiple
resources: discovery, scheduling,
replication.

Application: Contains actual grid applications in
a single organization.

Grid computing 29 / 40

Introduction: Types of distributed systems High performance distributed computing

Cloud computing

Application

Infrastructure

Computation (VM) torage (block), s , file

Hardware

Platforms

Software framework (Java/Python/.Net)
Storage ()databases

In
fr

a
s
tr

u
c
tu

re

a
a

 S
v
c

P
la

tf
o

rm

a
a

 S
v
c

S
o

ft
w

a
re

a
a
 S

v
c

MS Azure
Google App engine

Amazon S3

Amazon EC2

DatacentersCPU, memory, disk, bandwidth

Web services, multimedia, business apps

Google docs
Gmail
YouTube, Flickr

Cloud computing 30 / 40

Introduction: Types of distributed systems High performance distributed computing

Cloud computing

Make a distinction between four layers

Hardware: Processors, routers, power and cooling systems. Customers
normally never get to see these.

Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

Cloud computing 31 / 40

Introduction: Types of distributed systems Distributed information systems

Integrating applications

Situation
Organizations confronted with many networked applications, but achieving
interoperability was painful.

Basic approach

A networked application is one that runs on a server making its services
available to remote clients. Simple integration: clients combine requests for
(different) applications; send that off; collect responses, and present a coherent
result to the user.

Next step

Allow direct application-to-application communication, leading to Enterprise
Application Integration.

32 / 40

Introduction: Types of distributed systems Distributed information systems

Example EAI: (nested) transactions
Transaction

Primitive Description
BEGIN TRANSACTION Mark the start of a transaction
END TRANSACTION Terminate the transaction and try to commit
ABORT TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Issue: all-or-nothing

Airline database Hotel database

Subtransaction Subtransaction

Nested transaction

Two different (independent) databases

Atomic: happens indivisibly (seemingly)
Consistent: does not violate system invariants
Isolated: not mutual interference
Durable: commit means changes are permanent

Distributed transaction processing 33 / 40

Introduction: Types of distributed systems Distributed information systems

TPM: Transaction Processing Monitor

TP monitor

Server

Server

Server

Client

application

Requests

Reply

Request

Request

Request

Reply

Reply

Reply

Transaction

Observation
In many cases, the data involved in a transaction is distributed across several
servers. A TP Monitor is responsible for coordinating the execution of a
transaction.

Distributed transaction processing 34 / 40

Introduction: Types of distributed systems Distributed information systems

Middleware and EAI

Server-side

application

Server-side

application

Server-side

application

Client

application

Client

application

Communication middleware

Middleware offers communication facilities for integration

Remote Procedure Call (RPC): Requests are sent through local procedure
call, packaged as message, processed, responded through message, and
result returned as return from call.

Message Oriented Middleware (MOM): Messages are sent to logical contact
point (published), and forwarded to subscribed applications.

Enterprise application integration 35 / 40

Introduction: Types of distributed systems Pervasive systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

36 / 40

Introduction: Types of distributed systems Pervasive systems

Ubiquitous systems

Core elements
1 (Distribution) Devices are networked, distributed, and accessible in a

transparent manner
2 (Interaction) Interaction between users and devices is highly unobtrusive
3 (Context awareness) The system is aware of a user’s context in order to

optimize interaction
4 (Autonomy) Devices operate autonomously without human intervention,

and are thus highly self-managed
5 (Intelligence) The system as a whole can handle a wide range of

dynamic actions and interactions

Ubiquitous computing systems 37 / 40

Introduction: Types of distributed systems Pervasive systems

Mobile computing

Distinctive features

A myriad of different mobile devices (smartphones, tablets, GPS devices,
remote controls, active badges.

Mobile implies that a device’s location is expected to change over time ⇒
change of local services, reachability, etc. Keyword: discovery.

Communication may become more difficult: no stable route, but also
perhaps no guaranteed connectivity ⇒ disruption-tolerant networking.

Mobile computing systems 38 / 40

Introduction: Types of distributed systems Pervasive systems

Sensor networks

Characteristics
The nodes to which sensors are attached are:

Many (10s-1000s)

Simple (small memory/compute/communication capacity)

Often battery-powered (or even battery-less)

Sensor networks 39 / 40

Introduction: Types of distributed systems Pervasive systems

Sensor networks as distributed databases

Two extremes

Operator's site

Sensor network

Sensor data
is sent directly

to operator

Operator's site

Sensor network

Query

Sensors

send only

answers

Each sensor

can process and

store data

Sensor networks 40 / 40

