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CONCURRENCY: SYNCHRONIZATION 
 

1) What is the producer/consumer problem? 

The producer/consumer problem (also known as the bounded-buffer problem) is a classical 

example of a multi-process synchronization problem. The problem describes two processes, 

the producer and the consumer, who share a common, fixed-size buffer used as a queue. The 

producer's job is to generate a piece of data, put it into the buffer and start again. At the same 

time, the consumer is consuming the data (i.e., removing it from the buffer) one piece at a 

time. The problem is to make sure that the producer won't try to add data into the buffer if it's 

full and that the consumer won't try to remove data from an empty buffer. 

2) What is a monitor? 

A monitor is a programming language construct providing abstract data types and mutually 

exclusive access to a set of procedures 

3) What is the distinction between blocking and nonblocking with respect to messages? 

There are two aspects, the send and receive primitives. When a send primitive is executed in 

a process, there are two possibilities: either the sending process is blocked until the message 

is received, or it is not. Similarly, when a process issues a receive primitive, there are two 

possibilities: If a message has previously been sent, the message is received and execution 

continues. If there is no waiting message, then either (a) the process is blocked until a 

message arrives, or (b) the process continues to execute, abandoning the attempt to receive. 

4) What conditions are generally associated with the readers/writers problem? 

• Any number of readers may simultaneously read the file. 

• Only one writer at a time may write to the file. 

• If a writer is writing to the file, no reader may read it. 

5) Consider the following definition of semaphores: 
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Compare this set of definitions with that of Figure 5.6. Note one difference: With the 

preceding definition, a semaphore can never take on a negative value. Is there any difference 

in the effect of the two sets of definitions when used in programs? That is, could you 

substitute one set for the other without altering the meaning of the program? 

The two are equivalent. In the definition of Figure 5.6, when the value of the semaphore 

is negative, its value tells you how many processes are waiting. With the definition of this 

problem, you don't have that information readily available. However, the two versions 

function the same. 

6) It should be possible to implement general semaphores using binary semaphores. We can use 

the operations semWaitB and semSignalB and two binary semaphores, delay and mutex. 

Consider the following: 

Initially, s is set to the desired semaphore value. Each semWait operation decrements s , and 

each semSignal operation increments s . The binary semaphore mutex, which is initialized to 

1, assures that there is mutual exclusion for the updating of s . The binary semaphore delay, 

which is initialized to 0, is used to block processes.  

There is a flaw in the preceding program. Demonstrate the flaw and propose a change that 

will fix it. Hint: Suppose two processes each call semWait(s) when s is initially 0, and after 

the first has just performed semSignalB(mutex) but not performed semWaitB(delay) , the 

second call to semWait(s) proceeds to the same point. All that you need to do is move a 

single line of the program. 

Suppose two processes each call semWait(s) when s is initially 0, and after the first has 

just done semSignalB(mutex) but not done semWaitB(delay), the second call to 

semWait(s) proceeds to the same point. Because s = –2 and mutex is unlocked, if two 

other processes then successively execute their calls to semSignal(s) at that moment, they 

will each do semSignalB(delay), but the effect of the second semSignalB is not defined. 

The solution is to move the else line, which appears just before the end line in semWait to 

just before the end line in semSignal. Thus, the last semSignalB(mutex) in semWait 

becomes unconditional and the semSignalB(mutex) in semSignal becomes conditional. 

For a discussion, see "A Correct Implementation of General Semaphores," by 

Hemmendinger, Operating Systems Review, July 1988. 

7) The following pseudo code is a correct implementation of the producer/consumer problem 

with a bounded buffer: 
item[3] buffer; // initially empty 

semaphore empty; // initialized to +3 

semaphore full; // initialized to 0 

binary_semaphore mutex; // initialized to 1 

void producer() 

{ 

    ... 

    while (true) { 

        item = produce(); 

p1:     wait(empty); 

  /     wait(mutex); 

p2:     append(item); 

  \     signal(mutex); 

p3:     signal(full); 

    } 

} 

void consumer() 

{ 

    ... 

    while (true) { 

c1:     wait(full); 

  /     wait(mutex); 

c2:     item = take(); 

  \     signal(mutex); 

c3:     signal(empty); 

        consume(item); 

    } 

} 
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Labels p1, p2, p3 and c1, c2, c3 refer to the lines of code shown above (p2 and c2 each cover 

three lines of code). Semaphores empty and full are linear semaphores that can take 

unbounded negative and positive values. There are multiple producer processes, referred to 

as Pa, Pb, Pc, etc., and multiple consumer processes, referred to as Ca, Cb, Cc, etc. Each 

semaphore maintains a FIFO (first-in-first-out) queue of blocked processes. 

In the scheduling chart below, each line represents the state of the buffer and semaphores 

after the scheduled execution has occurred. To simplify, we assume that scheduling is such 

that processes are never interrupted while executing a given portion of code p1, or p2, …, or 

c3. Your task is to complete the following chart. 

Scheduled Step of 

Execution 

full’s State and Queue Buffer empty’s State 

and Queue 
Initialization  full = 0 OOO empty = +3 

Ca executes c1  full = -1 (Ca) OOO  empty = +3 

Cb executes c1  full = -2 (Ca, Cb) OOO  empty = +3 

Pa executes p1  full = -2 (Ca, Cb) OOO  empty = +2 

Pa executes p2  full = -2 (Ca, Cb) X OO empty = +2 

Pa executes p3  full = -1 (Cb) Ca X OO empty = +2 

Ca executes c2  full = -1 (Cb) OOO  empty = +2 

Ca executes c3  full = -1 (Cb) OOO  empty = +3 

Pb executes p1 full =   empty = 

Pa executes p1 full =   empty = 

Pa executes __ full =   empty = 

Pb executes __ full =   empty = 

Pb executes __ full =   empty = 

Pc executes p1 full =   empty = 

Cb executes __ full =   empty = 

Pc executes __ full =   empty = 

Cb executes __ full =   empty = 

Pa executes __ full =   empty = 

Pb executes p1-p3 full =   empty = 

Pc executes __ full =   empty = 

Pa executes p1 full =   empty = 

Pd executes p1 full =   empty = 

Ca executes c1-c3 full =  empty = 

Pa executes __ full =  empty = 

Cc executes c1-c2 full =  empty = 

Pa executes __ full =  empty = 

Cc executes c3 full =   empty = 

Pd executes p2-p3 full =   empty = 
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Differences from one step to the next are highlighted in red. 

Scheduled Step of 

Execution 

full’s State and Queue Buffer empty’s State and 

Queue 
Initialization full = 0 OOO empty = +3 

Ca executes c1 full = –1 (Ca) OOO empty = +3 

Cb executes c1 full = –2 (Ca, Cb) OOO empty = +3 

Pa executes p1 full = –2 (Ca, Cb) OOO empty = +2 

Pa executes p2 full = –2 (Ca, Cb) XOO empty = +2 

Pa executes p3 full = –1 (Cb) Ca XOO empty = +2 

Ca executes c2 full = –1 (Cb) OOO empty = +2 

Ca executes c3 full = –1 (Cb) OOO empty = +3 

Pb executes p1 full = –1 (Cb) OOO empty = +2 

Pa executes p1 full = –1 (Cb) OOO empty = +1 

Pa executes p2 full = –1 (Cb) XOO empty = +1 

Pb executes p2 full = –1 (Cb) XXO empty = +1 

Pb executes p3 full = 0 (Cb) XXO empty = +1 

Pc executes p1 full = 0 (Cb) XXO empty = 0 

Cb executes c2 full = 0 XOO empty = 0 

Pc executes p2 full = 0 XXO empty = 0 

Cb executes c3 full = 0 XXO empty = +1 

Pa executes p3 full = +1 XXO empty = +1 

Pb executes p1-p3 full = +2 XXX empty = 0 

Pc executes p3 full = +3 XXX empty = 0 

Pa executes p1 full = +3 XXX empty = –1(Pa) 

Pd executes p1 full = +3 XXX Empty = –2(Pa, Pd) 

Ca executes c1-c3 full = +2 XXO empty = –1(Pd) Pa 

Pa executes p2 full = +2 XXX empty = –1(Pd) 

Cc executes c1-c2 full = +1 XXO empty = –1(Pd) 

Pa executes p3 full = +2 XXO empty = –1(Pd) 

Cc executes c3 full = +2 XXO empty = 0(Pd) 

Pd executes p2-p3 full = +3 XXX empty = 0 

 

8) Consider a sharable resource with the following characteristics: (1) As long as there are 

fewer than three processes using the resource, new processes can start using it right away. (2) 

Once there are three process using the resource, all three must leave before any new 

processes can begin using it. We realize that counters are needed to keep track of how many 

processes are waiting and active, and that these counters are themselves shared resources that 

must be protected with mutual exclusion. So we might create the following solution:  
1   semaphore mutex = 1, block = 0;     /* share variables: semaphores, */ 

2   int active = 0, waiting = 0;                       /* counters, and */ 

3   boolean must_wait = false;                     /* state information */ 

4 

5   semWait(mutex);                       /* Enter the mutual exclusion */ 

6   if(must_wait) {                   /* If there are (or were) 3, then */ 

7      ++waiting;                    /* we must wait, but we must leave */ 

8      semSignal(mutex);                  /* the mutual exclusion first */ 

9      semWait(block);          /* Wait for all current users to depart */ 

10     semWait(mutex);                  /* Reenter the mutual exclusion */ 

11     --waiting;                       /* and update the waiting count */ 

12  } 

13  ++active;                      /* Update active count, and remember */ 

14  must_wait = active == 3;                  /* if the count reached 3 */ 

15  semSignal(mutex);                     /* Leave the mutual exclusion */ 
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16 

17  /* critical section */ 

18 

19  semWait(mutex);                           /* Enter mutual exclusion */ 

20  --active;                            /* and update the active count */ 

21  if(active == 0) {                             /* Last one to leave? */ 

22     int n; 

23     if (waiting < 3) n = waiting; 

24     else n = 3;                            /* If so, unblock up to 3 */ 

25     while( n > 0 ) {                            /* waiting processes */ 

26        semSignal(block); 

27        --n; 

28     } 

29     must_wait = false;             /* All active processes have left */ 

30     } 

31  semSignal(mutex);                     /* Leave the mutual exclusion */ 

 

The solution appears to do everything right: All accesses to the shared variables are protected 

by mutual exclusion, processes do not block themselves while in the mutual exclusion, new 

processes are prevented from using the resource if there are (or were) three active users, and 

the last process to depart unblocks up to three waiting processes. 

a) The program is nevertheless incorrect. Explain why. 

We quote the explanation in Reek's paper. There are two problems. First, because 

unblocked processes must reenter the mutual exclusion (line 10) there is a chance 

that newly arriving processes (at line 5) will beat them into the critical section. 

Second, there is a time delay between when the waiting processes are unblocked 

and when they resume execution and update the counters. The waiting processes 

must be accounted for as soon as they are unblocked (because they might resume 

execution at any time), but it may be some time before the processes actually do 

resume and update the counters to reflect this. To illustrate, consider the case 

where three processes are blocked at line 9. The last active process will unblock 

them (lines 25-28) as it departs. But there is no way to predict when these 

processes will resume executing and update the counters to reflect the fact that 

they have become active. If a new process reaches line 6 before the unblocked 

ones resume, the new one should be blocked. But the status variables have not yet 

been updated so the new process will gain access to the resource. When the 

unblocked ones eventually resume execution, they will also begin accessing the 

resource. The solution has failed because it has allowed four processes to access 

the resource together. 

b) Suppose we change the if in line 6 to a while. Does this solve any problem in the 

program? Do any difficulties remain? 

This forces unblocked processes to recheck whether they can begin using the 

resource. But this solution is more prone to starvation because it encourages new 

arrivals to “cut in line” ahead of those that were already waiting. 
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9) Explain what is the problem with this implementation of the one-writer many readers 

problem?  
int readcount;     // shared and initialized to 0  

Semaphore mutex, wrt;    // shared and initialized to 1;  

 

// Writer:     // Readers:  

semWait(wrt);    semWait(mutex);  

/* Writing performed*/   readcount++;  

semSignal(wrt);    if readcount == 1 then semWait(wrt);  

semSignal(mutex);  

/*reading performed*/  

semWait(mutex);  

readcount--;  

if readcount == 0 then semSign (wrt);  

semSignal(mutex); 

 

The code for the one-writer many readers is fine if we assume that the readers have 

always priority. The problem is that the readers can starve the writer(s) since they may 

never all leave the critical region, i.e., there is always at least one reader in the critical 

region, hence the ‘wrt’ semaphore may never be signaled to writers and the writer 

process does not get access to ‘wrt’ semaphore and writes into the critical region.  

 


