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CONCURRENCY: MUTUAL EXCLUSION 
 

1) List four design issues for which the concept of concurrency is relevant. 

• Communication among processes. 

• Sharing of and competing for resources. 

• Synchronization of the activities of multiple processes. 

• Allocation of processor time to processes. 

2) What are three contexts in which concurrency arise? 

• Multiple applications. 

• Structured applications. 

• Operating-system structure. 

3) What is the basic requirement for the execution of concurrent processes? 

The ability to enforce mutual exclusion. 

4) List three degrees of awareness between processes and briefly define each. 

• Processes unaware of each other: These are independent processes that are not intended 

to work together.  

• Processes indirectly aware of each other: These are processes that are not necessarily 

aware of each other by their respective process IDs, but that share access to some object, 

such as an I/O buffer.  

• Processes directly aware of each other: These are processes that are able to communicate 

with each other by process ID and which are designed to work jointly on some activity. 

5) What is the distinction between competing processes and cooperating processes? 

Competing processes need access to the same resource at the same time, such as a disk, file, 

or printer. Cooperating processes either share access to a common object, such as a memory 

buffer or are able to communicate with each other, and cooperate in the performance of some 

application or activity. 

6) List the three control problems associated with competing processes and briefly define each. 

• Mutual exclusion: competing processes can only access a resource that both wish to 

access one at a time; mutual exclusion mechanisms must enforce this one-at-a-time 

policy.  

• Deadlock: if competing processes need exclusive access to more than one resource then 

deadlock can occur if each processes gained control of one resource and is waiting for the 

other resource.  

• Starvation: one of a set of competing processes may be indefinitely denied access to a 

needed resource because other members of the set are monopolizing that resource. 
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7) List the requirements for mutual exclusion. 

• Mutual exclusion must be enforced: only one process at a time is allowed into its critical 

section, among all processes that have critical sections for the same resource or shared 

object.  

• A process that halts in its non-critical section must do so without interfering with other 

processes.  

• It must not be possible for a process requiring access to a critical section to be delayed 

indefinitely: no deadlock or starvation.  

• When no process is in a critical section, any process that requests entry to its critical 

section must be permitted to enter without delay.  

• No assumptions are made about relative process speeds or number of processors.  

• A process remains inside its critical section for a finite time only. 

8) What operations can be performed on a semaphore? 

• A semaphore may be initialized to a nonnegative value.  

• The wait operation decrements the semaphore value. If the value becomes negative, then 

the process executing the wait is blocked.  

• The signal operation increments the semaphore value. If the value is not positive, then a 

process blocked by a wait operation is unblocked 

9) What is the difference between binary and general semaphores? 

A binary semaphore may only take on the values 0 and 1. A general semaphore may take on 

any integer value. 

10) What is the difference between strong and weak semaphores? 

A strong semaphore requires that processes that are blocked on that semaphore are unblocked 

using a first-in-first-out policy. A weak semaphore does not dictate the order in which 

blocked processes are unblocked. 

11) At the beginning of Section 5.1, it is stated that multiprogramming and multiprocessing 

present the same problems, with respect to concurrency. This is true as far as it goes. 

However, cite two differences in terms of concurrency between multiprogramming and 

multiprocessing. 

On uniprocessors you can avoid interruption and thus concurrency by disabling interrupts. 

Also on multiprocessor machines another problem arises: memory ordering (multiple 

processors accessing the memory unit). 

12) Consider the following program: 
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Note that the scheduler in a uniprocessor system would implement pseudo-parallel execution 

of these two concurrent processes by interleaving their instructions, without restriction on the 

order of the interleaving. 

a) Show a sequence (i.e., trace the sequence of interleavings of statements) such that the 

statement “x is 10” is printed. 

b) Show a sequence such that the statement “x is 8” is printed. You should remember that 

the increment/decrements at the source language level are not done atomically, that is, the 

assembly language code: 
LD R0,X  /* load R0 from memory location x */  

INCR R0  /* increment R0 */  

STO R0,X  /* store the incremented value back in X */  

Implements the single C increment instruction (x = x + 1). 

a) For "x is 10", the interleaving producing the required behavior is easy to find since it 

requires only an interleaving at the source language statement level. The essential fact 

here is that the test for the value of x is interleaved with the increment of x by the 

other process. Thus, x was not equal to 10 when the test was performed, but was 

equal to 10 by the time the value of x was read from memory for printing. 
M(x)  

P1: x = x - 1;    9  

P1: x = x + 1;    10  

P2: x = x - 1;    9  

P1: if(x != 10)    9  

P2: x = x + 1;    10  

P1: printf("x is %d", x);  10  

"x is 10" is printed. 

b) For "x is 8" we need to be more inventive, since we need to use interleavings of the 

machine instructions to find a way for the value of x to be established as 9 so it can 

then be evaluated as 8 in a later cycle. Notice how the first two blocks of statements 

correspond to C source lines, but how later blocks of machine language statements 

interleave portions of a source language statement. 
Instruction    M(x)  P1-R0  P2-R0  

P1: LD R0, x    10   10   –-  

P1: DECR R0    10   9   --  

P1: STO R0, x    9   9   --  

P2: LD R0, x    9   9   9  

P2: DECR R0    9   9   8  

P2: STO R0, x    8   9   8  

P1: LD R0, x    8   8   8  

P1: INCR R0    8   9   -–  

P2: LD R0, x    8   9   8  

P2: INCR R0    8   9   9  

P2: STO R0, x    9   9   9  

P2: if(x != 10) printf("x is %d", x);  

P2: "x is 9" is printed.  

P1: STO R0, x    9   9   9  

P1: if(x != 10) printf("x is %d", x); 
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P1: "x is 9" is printed.  

P1: LD R0, x    9   9   9  

P1: DECR R0    9   8   --  

P1: STO R0, x    8   8   -–  

P2: LD R0, x    8   8   8  

P2: DECR R0    8   8   7  

P2: STO R0, x    7   8   7  

P1: LD R0, x    7   7   7  

P1: INCR R0    8   8   7  

P1: STO R0, x    8   8   7  

P1: if(x != 10) printf("x is %d", x);  

P1: "x is 8" is printed. 

13) Consider the following program: 
const int n = 50;  

int tally;  

void total() {  

int count;  

for (count = 1; count <= n; count++) {  

tally++;  

}  

}  

void main() {  

tally = 0;  

parbegin (total (), total ());  

write (tally);  

} 

a) Determine the proper lower bound and upper bound on the final value of the shared 

variable tally output by this concurrent program. Assume processes can execute at any 

relative speed and that a value can only be incremented after it has been loaded into a 

register by a separate machine instruction. 

b) Suppose that an arbitrary number of these processes are permitted to execute in parallel 

under the assumptions of part (a). What effect will this modification have on the range of 

final values of tally? 

a) On casual inspection, it appears that tally will fall in the range 50≤tally≤100 since 

from 0 to 50 increments could go unrecorded due to the lack of mutual exclusion. The 

basic argument contends that by running these two processes concurrently we should 

not be able to derive a result lower than the result produced by executing just one of 

these processes sequentially. But consider the following interleaved sequence of the 

load, increment, and store operations performed by these two processes when altering 

the value of the shared variable: 

(1) Process A loads the value of tally, increments tally, but then loses the processor (it 

has incremented its register to 1, but has not yet stored this value. 

(2) Process B loads the value of tally (still zero) and performs forty-nine complete 

increment operations, losing the processor after it has stored the value 49 into the 

shared variable tally. 
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(3) Process A regains control long enough to perform its first store operation 

(replacing the previous tally value of 49 with 1) but is then immediately forced to 

relinquish the processor. 

(4) Process B resumes long enough to load 1 (the current value of tally) into its 

register, but then it too is forced to give up the processor (note that this was B's 

final load). 

(5) Process A is rescheduled, but this time it is not interrupted and runs to 

completion, performing its remaining 49 load, increment, and store operations, 

which results in setting the value of tally to 50. 

(6) Process B is reactivated with only one increment and store operation to perform 

before it terminates. It increments its register value to 2 and stores this value as 

the final value of the shared variable. 

Some thought will reveal that a value lower than 2 cannot occur. Thus, the proper 

range of final values is 2≤tally≤100. 

b) For the generalized case of N processes, the range of final values is 2  tally  (N  

50), since it is possible for all other processes to be initially scheduled and run to 

completion in step (5) before Process B would finally destroy their work by finishing 

last. 

14) Is busy waiting always less efficient (in terms of using processor time) than a blocking wait? 

Explain. 

On average, yes, because busy-waiting consumes useless instruction cycles. However, in 

a particular case, if a process comes to a point in the program where it must wait for a 

condition to be satisfied, and if that condition is already satisfied, then the busy-wait will 

find that out immediately, whereas, the blocking wait will consume OS resources 

switching out of and back into the process. 
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15) Consider the following program: 

 
 

 

 

This software solution to the mutual exclusion problem for two processes is proposed. Find a 

counterexample that demonstrates that this solution is incorrect. 

Consider the case in which turn equals 0 and P(1) sets blocked[1] to true and then finds 

blocked[0] set to false. P(0) will then set blocked[0] to true, find turn = 0, and enter its 

critical section. P(1) will then assign 1 to turn and will also enter its critical section 

16) A software approach to mutual exclusion is Lamport’s bakery algorithm [LAMP74], so 

called because it is based on the practice in bakeries and other shops in which every customer 

receives a numbered ticket on arrival, allowing each to be served in turn. The algorithm is as 

follows: 
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The arrays choosing and number are initialized to false and 0, respectively. The i th element 

of each array may be read and written by process i but only read by other processes. The 

notation ( a , b ) < ( c , d ) is defined as: ( a < c ) or ( a = c and b < d ) 

a) Describe the algorithm in words. 

When a process wishes to enter its critical section, it is assigned a ticket number. The 

ticket number assigned is calculated by adding one to the largest of the ticket numbers 

currently held by the processes waiting to enter their critical section and the process 

already in its critical section. The process with the smallest ticket number has the highest 

precedence for entering its critical section. In case more than one process receives the 

same ticket number, the process with the smallest numerical name enters its critical 

section. When a process exits its critical section, it resets its ticket number to zero. 

b) Show that this algorithm avoids deadlock. 

If each process is assigned a unique process number, then there is a unique, strict 

ordering of processes at all times. Therefore, deadlock cannot occur. 

c) Show that it enforces mutual exclusion. 

To demonstrate mutual exclusion, we first need to prove the following lemma: if Pi is in 

its critical section, and Pk has calculated its number[k] and is attempting to enter its 

critical section, then the following relationship holds:  

( number[i], i ) < ( number[k], k )  

To prove the lemma, define the following times:  

• Tw1 → Pi reads choosing[k] for the last time, for j = k, in its first wait, so we have 

choosing[k] = false at Tw1.  

• Tw2 → Pi begins its final execution, for j = k, of the second while loop. We 

therefore have Tw1 < Tw2.  

• Tk1 → Pk enters the beginning of the repeat loop.  

• Tk2 → Pk finishes calculating number[k].  

• Tk3 → Pk sets choosing[k] to false.  

We have Tk1 < Tk2 < Tk3.  

Since at Tw1, choosing[k] = false, we have either Tw1<Tk1 or Tk3<Tw1. In the first case, we 

have number[i] < number[k], since Pi was assigned its number prior to Pk; this satisfies 

the condition of the lemma. 

In the second case, we have Tk2<Tk3<Tw1<Tw2, and therefore Tk2<Tw2. This means that at 

Tw2, Pi has read the current value of number[k]. Moreover, as Tw2 is the moment at which 

the final execution of the second while for j = k takes place, we have (number[i], i ) < ( 

number[k], k), which completes the proof of the lemma. 

It is now easy to show the mutual exclusion is enforced. Assume that Pi is in its critical 

section and Pk is attempting to enter its critical section. Pk will be unable to enter its 

critical section, as it will find number[i]≠ 0 and ( number[i], i ) < ( number[k], k ). 
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17) Now consider a version of the bakery algorithm without the variable choosing. Then we have 

 
Does this version violate mutual exclusion? Explain why or why not. 

Suppose we have two processes just beginning; call them p0 and p1. Both reach line 3 at 

the same time. Now, we'll assume both read number[0] and number[1] before either 

addition takes place. Let p1 complete the line, assigning 1 to number[1], but p0 block 

before the assignment. Then p1 gets through the while loop at line 5 and enters the 

critical section. While in the critical section, it blocks; p0 unblocks, and assigns 1 to 

number[0] at line 3. It proceeds to the while loop at line 5. When it goes through that loop 

for j = 1, the first condition on line 5 is true. Further, the second condition on line 5 is 

false, so p0 enters the critical section. Now p0 and p1 are both in the critical section, 

violating mutual exclusion. The reason for choosing is to prevent the while loop in line 5 

from being entered when process j is setting its number[j]. Note that if the loop is entered 

and then process j reaches line 3, one of two situations arises. Either number[j] has the 

value 0 when the first test is executed, in which case process i moves on to the next 

process, or number[j] has a non-zero value, in which case at some point number[j] will be 

greater than number[i] (since process i finished executing statement 3 before process j 

began). Either way, process i will enter the critical section before process j, and when 

process j reaches the while loop, it will loop at least until process i leaves the critical 

section. 

 


