
1

 الاسكندرية جامعة

 الهندسة كلية

 الاتصالاتو الحاسب هندسة برنامج

 نظم التشغيل مادة

Alexandria University

Faculty of Engineering

Comp. & Comm. Engineering

CC373: Operating Systems

Lab3

Mini Shell

Introduction:

The main goal is to build a mini shell and execute some simple shell commands, some

sources is being provided so you don’t need to start from scratch.

First Part: Understand the source code provided

Mainly we use Lex and Yacc to build the scanner and parser for your shell so you do not

have to implement a parser yourself to parse the user’s input. Please take some time to learn

Lex and Yacc before starting

Here are some tutorials on Lex and Yacc.

Also, watch this video!

Download the lab3-src-tar.gz file that contains all what you need in your machine and do the

following command that will unpack the files for you
tar xvfz lab3-src.tar.gz

Let’s give you overview about the project arcticture before doing your first run.

• examples folder which have some code snippit that may

help you while development

• Commands.cc and command.h is where you will put

most of the C code

• Makefile no need to do any changes there

• shell.l and shell.y is lex and yacc configuration files

http://www.opengroup.org/onlinepubs/7990989775/xcu/lex.html
http://www.opengroup.org/onlinepubs/7990989775/xcu/yacc.html
https://www.youtube.com/watch?v=54bo1qaHAfk&ab_channel=JonathanEngelsma

2

Let’s start to run:

Build the shell program by typing :

 make

To run it type:
 ./shell

Then type commands like
 ls -al

 ls -al aaa bbb > out

Check the output printed

Try to understand how the program works. First read the Makefile to learn how the program

is built. The file command.h implements the data structure that represents a shell command.

The struct SimpleCommand implements the list of arguments of a simple command. Usually

a shell command can be represented by only one SimpleCommand. However, when pipes are

used, a command will consist of more than one SimpleCommand. The

struct Command represents a list of SimpleCommand structs. Other fields that

the Command struct has are _outFile, _inputFile, and _errFile that represent input, output,

and error redirection.

Currently the shell program implements a very simple grammar:

 cmd [arg]* [> filename]

You will have to modify shell.y to implement a more complex grammar

cmd [arg]* [| cmd [arg]*]* [[> filename]

 [< filename]

 [>> filename]]* [&]

Insert the necessary actions in shell.y to fill in the Command struct. Make sure that

the Command struct is printed correctly.

Run your program against the following commands:

 ls

 ls -al

 ls -al aaa bbb cc

 ls -al aaa bbb cc > outfile

 ls -al aaa bbb cc >> outfile

 cat file | grep text

 ls | cat | grep > out < inp

 ls aaaa | grep cccc | grep jjjj ssss dfdffd

 httpd &

3

Second part: Process Creation, Execution, File Redirection, Pipes, and

Background

Starting from the command table produced in Part 1, in this part you will execute the simple

commands, do the file redirection, piping and if necessary wait for the commands to end.

1. For every simple command create a new process using fork() and call execvp() to

execute the corresponding executable. If the _bakground flag in the Command struct

is not set then your shell has to wait for the last simple command to finish

using waitpid(). Check the manual pages of fork(), execvp(), and waitpid(). Also there

is an example file that executes processes and does redirection in cat_grep.cc. After

this part is done you have to be able to execute commands like:

 ls -al

 ls -al /etc &

2. Now do the file redirection. If any of the input/output/error is different than 0 in the

Command struct, then create the files, and use dup2() to redirect file descriptors 0, 1,

or 2 to the new files. See the example ls_output.cc to see how to do redirection. After

this part you have to be able to execute commands like:

 ls -al > out

 ls -al >> out

 cat out

 cat < out

 cat < out > out2

 cat out2

 ls /tt >>& out2

3. Now do the pipes. Use the call pipe() to create pipes that will interconnect the output

of one simple command to the input of the next simple command. use dup2() to do the

redirection. See the example cat_grep.cc to see how to construct pipes and do

redirection. After this part you have to be able to execute commands like:

 ls -al | grep command

 ls -al | grep command | grep command.o

 ls -al | grep command

 ls -al | grep command | grep command.o > out

 cat out

4

Third part: Control-C ,Exit, Change Directory, Process creation log file

1. Your shell has to ignore ctrl-c. When ctrl-c is typed, a signal SIGINT is generated that

kills the program.

2. You will also have to implement also an internal command called exit that will exit

the shell when you type it. Remember that the exit command has to be executed by

the shell itself without forking another process.

 myshell> exit

 Good bye!!

 csh>

3. Implement the cd [dir] command. This command changes the current directory

to dir. When dir is not specified, the current directory is changed to the home

directory. Check "man 2 chdir".

4. Extend lex to support any character in the arguments that is not a special character

such as "&", ">", "<", "|" etc. Also, your shell should allow no spaces between "|", ">"

etc. For example, "ls|grep a" without spaces after "ls" and before "grep" should work.

5. It’s required to create a log file that contains Logs when every child is terminated you

can use SIGCHLD signal to do so.

Bouns part:

1. do the wildcarding. The wildcarding will work in the same way that it works in shells

like csh. The "*" character matches 0 or more nonspace characters. The "?" character

matches one nonspace character. The shell will expand the wildcards to the file names

that match the wildcard where each matched file name will be an argument.

echo * // Prints all the files in the current directory

echo *.cc // Prints all the files in the current

 // directory that end with cc

echo c*.cc

echo M*f*

echo /tmp/* // Prints all the files in the tmp directory

echo /*t*/*

echo /dev/*

